L(s) = 1 | − 3-s + 5-s + 2·7-s + 9-s + 6·11-s − 15-s − 2·21-s + 25-s − 27-s − 6·33-s + 2·35-s + 8·43-s + 45-s − 2·49-s − 12·53-s + 6·55-s + 18·59-s + 4·61-s + 2·63-s − 4·67-s + 12·71-s − 75-s + 12·77-s + 81-s + 6·99-s − 10·103-s − 2·105-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 1.80·11-s − 0.258·15-s − 0.436·21-s + 1/5·25-s − 0.192·27-s − 1.04·33-s + 0.338·35-s + 1.21·43-s + 0.149·45-s − 2/7·49-s − 1.64·53-s + 0.809·55-s + 2.34·59-s + 0.512·61-s + 0.251·63-s − 0.488·67-s + 1.42·71-s − 0.115·75-s + 1.36·77-s + 1/9·81-s + 0.603·99-s − 0.985·103-s − 0.195·105-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 216000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.963907807 |
L(21) |
≈ |
1.963907807 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1+T |
| 5 | C1 | 1−T |
good | 7 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 11 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 13 | C22 | 1−2T2+p2T4 |
| 17 | C2 | (1+pT2)2 |
| 19 | C22 | 1+10T2+p2T4 |
| 23 | C22 | 1−26T2+p2T4 |
| 29 | C22 | 1−50T2+p2T4 |
| 31 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 37 | C22 | 1−2T2+p2T4 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C22 | 1−14T2+p2T4 |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C2×C2 | (1−12T+pT2)(1−6T+pT2) |
| 61 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 67 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 71 | C2×C2 | (1−12T+pT2)(1+pT2) |
| 73 | C22 | 1−74T2+p2T4 |
| 79 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 83 | C22 | 1−86T2+p2T4 |
| 89 | C22 | 1+70T2+p2T4 |
| 97 | C2 | (1−14T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.141241154029135032259294624053, −8.609298928202332924153573545631, −8.111123297949343578743720333764, −7.62278521410384067925608890140, −6.93159405149276696220808232612, −6.63621551256985941580492577404, −6.20367239541730683512107851461, −5.56354189044085788017222900632, −5.17790188564623764239537996870, −4.47799600643106816674367720352, −4.05726476535751679542914610079, −3.46610539182281159391386066816, −2.46858524619923688484799519620, −1.68298604675044022991253635007, −1.01603419970345686879799970894,
1.01603419970345686879799970894, 1.68298604675044022991253635007, 2.46858524619923688484799519620, 3.46610539182281159391386066816, 4.05726476535751679542914610079, 4.47799600643106816674367720352, 5.17790188564623764239537996870, 5.56354189044085788017222900632, 6.20367239541730683512107851461, 6.63621551256985941580492577404, 6.93159405149276696220808232612, 7.62278521410384067925608890140, 8.111123297949343578743720333764, 8.609298928202332924153573545631, 9.141241154029135032259294624053