L(s) = 1 | + 2-s − 4-s − 3·5-s + 4·7-s − 3·8-s − 3·10-s + 5·13-s + 4·14-s − 16-s + 3·20-s + 4·25-s + 5·26-s − 4·28-s − 10·29-s + 5·32-s − 12·35-s − 10·37-s + 9·40-s + 10·47-s + 9·49-s + 4·50-s − 5·52-s − 12·56-s − 10·58-s + 7·64-s − 15·65-s + 17·67-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.34·5-s + 1.51·7-s − 1.06·8-s − 0.948·10-s + 1.38·13-s + 1.06·14-s − 1/4·16-s + 0.670·20-s + 4/5·25-s + 0.980·26-s − 0.755·28-s − 1.85·29-s + 0.883·32-s − 2.02·35-s − 1.64·37-s + 1.42·40-s + 1.45·47-s + 9/7·49-s + 0.565·50-s − 0.693·52-s − 1.60·56-s − 1.31·58-s + 7/8·64-s − 1.86·65-s + 2.07·67-s + ⋯ |
Λ(s)=(=(828100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(828100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
828100
= 22⋅52⋅72⋅132
|
Sign: |
1
|
Analytic conductor: |
52.8003 |
Root analytic conductor: |
2.69562 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 828100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.899183875 |
L(21) |
≈ |
1.899183875 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+pT2 |
| 5 | C2 | 1+3T+pT2 |
| 7 | C2 | 1−4T+pT2 |
| 13 | C2 | 1−5T+pT2 |
good | 3 | C22 | 1+p2T4 |
| 11 | C22 | 1+4T2+p2T4 |
| 17 | C22 | 1−9T2+p2T4 |
| 19 | C22 | 1−20T2+p2T4 |
| 23 | C22 | 1−26T2+p2T4 |
| 29 | C2×C2 | (1+pT2)(1+10T+pT2) |
| 31 | C22 | 1−8T2+p2T4 |
| 37 | C2×C2 | (1+pT2)(1+10T+pT2) |
| 41 | C22 | 1+27T2+p2T4 |
| 43 | C22 | 1−82T2+p2T4 |
| 47 | C2×C2 | (1−8T+pT2)(1−2T+pT2) |
| 53 | C22 | 1+11T2+p2T4 |
| 59 | C22 | 1−22T2+p2T4 |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2×C2 | (1−15T+pT2)(1−2T+pT2) |
| 71 | C22 | 1+20T2+p2T4 |
| 73 | C2×C2 | (1−2T+pT2)(1+12T+pT2) |
| 79 | C2×C2 | (1−8T+pT2)(1+3T+pT2) |
| 83 | C2×C2 | (1−6T+pT2)(1+11T+pT2) |
| 89 | C22 | 1−65T2+p2T4 |
| 97 | C2×C2 | (1−19T+pT2)(1−18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.384907606716604755146909068134, −7.72563785602142736028858164054, −7.45584937274136543385473227213, −7.03495957309274642467837366035, −6.31337650872544824735140754339, −5.75902371009033282955720019688, −5.48507105789302802646487835099, −4.85638567953984695031278672420, −4.56612656321565681987255903759, −3.89945272797370043233009908055, −3.70934164968343504770018970371, −3.30226944818049256621107695580, −2.28364480233662647720881213201, −1.56690003188077209026588135426, −0.62242832475543800281374199005,
0.62242832475543800281374199005, 1.56690003188077209026588135426, 2.28364480233662647720881213201, 3.30226944818049256621107695580, 3.70934164968343504770018970371, 3.89945272797370043233009908055, 4.56612656321565681987255903759, 4.85638567953984695031278672420, 5.48507105789302802646487835099, 5.75902371009033282955720019688, 6.31337650872544824735140754339, 7.03495957309274642467837366035, 7.45584937274136543385473227213, 7.72563785602142736028858164054, 8.384907606716604755146909068134