L(s) = 1 | + 4·7-s + 9-s + 4·23-s − 25-s + 4·41-s + 12·47-s − 2·49-s + 4·63-s + 8·71-s − 4·73-s + 81-s + 4·89-s − 4·97-s + 12·103-s − 8·113-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 16·161-s + 163-s + 167-s + 6·169-s + ⋯ |
L(s) = 1 | + 1.51·7-s + 1/3·9-s + 0.834·23-s − 1/5·25-s + 0.624·41-s + 1.75·47-s − 2/7·49-s + 0.503·63-s + 0.949·71-s − 0.468·73-s + 1/9·81-s + 0.423·89-s − 0.406·97-s + 1.18·103-s − 0.752·113-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 1.26·161-s + 0.0783·163-s + 0.0773·167-s + 6/13·169-s + ⋯ |
Λ(s)=(=(230400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(230400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
230400
= 210⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
14.6905 |
Root analytic conductor: |
1.95775 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 230400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.221587558 |
L(21) |
≈ |
2.221587558 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 5 | C2 | 1+T2 |
good | 7 | C2 | (1−2T+pT2)2 |
| 11 | C22 | 1+10T2+p2T4 |
| 13 | C22 | 1−6T2+p2T4 |
| 17 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 19 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C2×C2 | (1−4T+pT2)(1+pT2) |
| 29 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 41 | C2×C2 | (1−6T+pT2)(1+2T+pT2) |
| 43 | C22 | 1+6T2+p2T4 |
| 47 | C2×C2 | (1−12T+pT2)(1+pT2) |
| 53 | C22 | 1−22T2+p2T4 |
| 59 | C22 | 1+90T2+p2T4 |
| 61 | C22 | 1−10T2+p2T4 |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 73 | C2×C2 | (1−10T+pT2)(1+14T+pT2) |
| 79 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 83 | C22 | 1−58T2+p2T4 |
| 89 | C2×C2 | (1−6T+pT2)(1+2T+pT2) |
| 97 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.010491145617605083476351870773, −8.460687659062073508331132456542, −8.061548317513178034733944314162, −7.59291462867186493700473932851, −7.24489141892793086305399814747, −6.65388597794988806319202028461, −6.07248787764964529117609675479, −5.45297028291658394314709952790, −5.03796141753130864842855351444, −4.51416044297849093294124555918, −4.06028195628447761837367673348, −3.30054061241319217567250675863, −2.48949295169962412612476552574, −1.80359649052988157033946617775, −1.00760419767862181709979731337,
1.00760419767862181709979731337, 1.80359649052988157033946617775, 2.48949295169962412612476552574, 3.30054061241319217567250675863, 4.06028195628447761837367673348, 4.51416044297849093294124555918, 5.03796141753130864842855351444, 5.45297028291658394314709952790, 6.07248787764964529117609675479, 6.65388597794988806319202028461, 7.24489141892793086305399814747, 7.59291462867186493700473932851, 8.061548317513178034733944314162, 8.460687659062073508331132456542, 9.010491145617605083476351870773