Properties

Label 4-24448-1.1-c1e2-0-2
Degree $4$
Conductor $24448$
Sign $1$
Analytic cond. $1.55882$
Root an. cond. $1.11737$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·7-s + 8-s + 2·9-s + 2·14-s + 16-s − 17-s + 2·18-s − 14·23-s − 25-s + 2·28-s + 6·31-s + 32-s − 34-s + 2·36-s − 5·41-s − 14·46-s + 7·47-s + 5·49-s − 50-s + 2·56-s + 6·62-s + 4·63-s + 64-s − 68-s − 26·71-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.755·7-s + 0.353·8-s + 2/3·9-s + 0.534·14-s + 1/4·16-s − 0.242·17-s + 0.471·18-s − 2.91·23-s − 1/5·25-s + 0.377·28-s + 1.07·31-s + 0.176·32-s − 0.171·34-s + 1/3·36-s − 0.780·41-s − 2.06·46-s + 1.02·47-s + 5/7·49-s − 0.141·50-s + 0.267·56-s + 0.762·62-s + 0.503·63-s + 1/8·64-s − 0.121·68-s − 3.08·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24448 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24448 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(24448\)    =    \(2^{7} \cdot 191\)
Sign: $1$
Analytic conductor: \(1.55882\)
Root analytic conductor: \(1.11737\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 24448,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.962611464\)
\(L(\frac12)\) \(\approx\) \(1.962611464\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
191$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 6 T + p T^{2} ) \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 19 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + T + p T^{2} ) \)
37$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + p T^{2} ) \)
53$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 104 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + 12 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 146 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - T + p T^{2} ) \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.62568836253306071673732054988, −10.17407737261276440003145294717, −9.947135977322009842513373671912, −9.042682854241946217968178648794, −8.425563676112510119340051542023, −7.86765929867489967440726902719, −7.48219687920498682034105288097, −6.72927967112185856729530136877, −6.08297860483442248886341827672, −5.63490496466260502638218294432, −4.72618195601609781932857717580, −4.27399667014652757006015136100, −3.67975111074027991085489251918, −2.48183014565161592351785890256, −1.67329874314093529772851850688, 1.67329874314093529772851850688, 2.48183014565161592351785890256, 3.67975111074027991085489251918, 4.27399667014652757006015136100, 4.72618195601609781932857717580, 5.63490496466260502638218294432, 6.08297860483442248886341827672, 6.72927967112185856729530136877, 7.48219687920498682034105288097, 7.86765929867489967440726902719, 8.425563676112510119340051542023, 9.042682854241946217968178648794, 9.947135977322009842513373671912, 10.17407737261276440003145294717, 10.62568836253306071673732054988

Graph of the $Z$-function along the critical line