L(s) = 1 | − 2-s − 4-s + 2·7-s + 3·8-s − 2·14-s − 16-s − 10·17-s + 6·23-s + 8·25-s − 2·28-s − 10·31-s − 5·32-s + 10·34-s − 4·41-s − 6·46-s − 6·47-s − 3·49-s − 8·50-s + 6·56-s + 10·62-s + 7·64-s + 10·68-s − 8·71-s − 4·73-s + 6·79-s + 4·82-s + 6·89-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 0.755·7-s + 1.06·8-s − 0.534·14-s − 1/4·16-s − 2.42·17-s + 1.25·23-s + 8/5·25-s − 0.377·28-s − 1.79·31-s − 0.883·32-s + 1.71·34-s − 0.624·41-s − 0.884·46-s − 0.875·47-s − 3/7·49-s − 1.13·50-s + 0.801·56-s + 1.27·62-s + 7/8·64-s + 1.21·68-s − 0.949·71-s − 0.468·73-s + 0.675·79-s + 0.441·82-s + 0.635·89-s + ⋯ |
Λ(s)=(=(254016s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(254016s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
254016
= 26⋅34⋅72
|
Sign: |
−1
|
Analytic conductor: |
16.1962 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 254016, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+pT2 |
| 3 | | 1 |
| 7 | C2 | 1−2T+pT2 |
good | 5 | C22 | 1−8T2+p2T4 |
| 11 | C22 | 1+2T2+p2T4 |
| 13 | C22 | 1+20T2+p2T4 |
| 17 | C2×C2 | (1+4T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 23 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 29 | C22 | 1+18T2+p2T4 |
| 31 | C2×C2 | (1+4T+pT2)(1+6T+pT2) |
| 37 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 41 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 43 | C22 | 1+34T2+p2T4 |
| 47 | C2×C2 | (1−4T+pT2)(1+10T+pT2) |
| 53 | C22 | 1−86T2+p2T4 |
| 59 | C22 | 1−18T2+p2T4 |
| 61 | C22 | 1−12T2+p2T4 |
| 67 | C22 | 1+54T2+p2T4 |
| 71 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 73 | C2×C2 | (1−10T+pT2)(1+14T+pT2) |
| 79 | C2×C2 | (1−14T+pT2)(1+8T+pT2) |
| 83 | C22 | 1−14T2+p2T4 |
| 89 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 97 | C2×C2 | (1−2T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.871415429730867931626019060088, −8.310836747793656367534705861594, −7.981273041406930648833538630199, −7.22967943932231695135318750774, −6.93225845707495568453488322983, −6.58582320781888110701679481137, −5.71203585560334225029412443552, −5.01361926234580575550834509635, −4.83452918732394601916818109792, −4.31423602400404044304388677178, −3.63333331448173413922530583590, −2.80952555503907413890783276275, −1.98154620057462151554929555738, −1.30433199199338668521553453852, 0,
1.30433199199338668521553453852, 1.98154620057462151554929555738, 2.80952555503907413890783276275, 3.63333331448173413922530583590, 4.31423602400404044304388677178, 4.83452918732394601916818109792, 5.01361926234580575550834509635, 5.71203585560334225029412443552, 6.58582320781888110701679481137, 6.93225845707495568453488322983, 7.22967943932231695135318750774, 7.981273041406930648833538630199, 8.310836747793656367534705861594, 8.871415429730867931626019060088