Properties

Label 4-504e2-1.1-c1e2-0-47
Degree $4$
Conductor $254016$
Sign $-1$
Analytic cond. $16.1962$
Root an. cond. $2.00610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 2·7-s + 3·8-s − 2·14-s − 16-s − 10·17-s + 6·23-s + 8·25-s − 2·28-s − 10·31-s − 5·32-s + 10·34-s − 4·41-s − 6·46-s − 6·47-s − 3·49-s − 8·50-s + 6·56-s + 10·62-s + 7·64-s + 10·68-s − 8·71-s − 4·73-s + 6·79-s + 4·82-s + 6·89-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.755·7-s + 1.06·8-s − 0.534·14-s − 1/4·16-s − 2.42·17-s + 1.25·23-s + 8/5·25-s − 0.377·28-s − 1.79·31-s − 0.883·32-s + 1.71·34-s − 0.624·41-s − 0.884·46-s − 0.875·47-s − 3/7·49-s − 1.13·50-s + 0.801·56-s + 1.27·62-s + 7/8·64-s + 1.21·68-s − 0.949·71-s − 0.468·73-s + 0.675·79-s + 0.441·82-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(254016\)    =    \(2^{6} \cdot 3^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(16.1962\)
Root analytic conductor: \(2.00610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 254016,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3 \( 1 \)
7$C_2$ \( 1 - 2 T + p T^{2} \)
good5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
53$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.871415429730867931626019060088, −8.310836747793656367534705861594, −7.981273041406930648833538630199, −7.22967943932231695135318750774, −6.93225845707495568453488322983, −6.58582320781888110701679481137, −5.71203585560334225029412443552, −5.01361926234580575550834509635, −4.83452918732394601916818109792, −4.31423602400404044304388677178, −3.63333331448173413922530583590, −2.80952555503907413890783276275, −1.98154620057462151554929555738, −1.30433199199338668521553453852, 0, 1.30433199199338668521553453852, 1.98154620057462151554929555738, 2.80952555503907413890783276275, 3.63333331448173413922530583590, 4.31423602400404044304388677178, 4.83452918732394601916818109792, 5.01361926234580575550834509635, 5.71203585560334225029412443552, 6.58582320781888110701679481137, 6.93225845707495568453488322983, 7.22967943932231695135318750774, 7.981273041406930648833538630199, 8.310836747793656367534705861594, 8.871415429730867931626019060088

Graph of the $Z$-function along the critical line