L(s) = 1 | + 2·2-s + 2·4-s − 3·5-s − 7-s − 3·9-s − 6·10-s + 3·11-s − 2·14-s − 4·16-s − 3·17-s − 6·18-s − 19-s − 6·20-s + 6·22-s − 8·23-s + 4·25-s − 2·28-s + 2·29-s − 2·31-s − 8·32-s − 6·34-s + 3·35-s − 6·36-s − 4·37-s − 2·38-s + 6·41-s − 5·43-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 1.34·5-s − 0.377·7-s − 9-s − 1.89·10-s + 0.904·11-s − 0.534·14-s − 16-s − 0.727·17-s − 1.41·18-s − 0.229·19-s − 1.34·20-s + 1.27·22-s − 1.66·23-s + 4/5·25-s − 0.377·28-s + 0.371·29-s − 0.359·31-s − 1.41·32-s − 1.02·34-s + 0.507·35-s − 36-s − 0.657·37-s − 0.324·38-s + 0.937·41-s − 0.762·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1007 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1007 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 19 | \( 1 + T \) |
| 53 | \( 1 + T \) |
good | 2 | \( 1 - p T + p T^{2} \) |
| 3 | \( 1 + p T^{2} \) |
| 5 | \( 1 + 3 T + p T^{2} \) |
| 7 | \( 1 + T + p T^{2} \) |
| 11 | \( 1 - 3 T + p T^{2} \) |
| 13 | \( 1 + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + 2 T + p T^{2} \) |
| 37 | \( 1 + 4 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 + 5 T + p T^{2} \) |
| 47 | \( 1 - 13 T + p T^{2} \) |
| 59 | \( 1 + 14 T + p T^{2} \) |
| 61 | \( 1 - T + p T^{2} \) |
| 67 | \( 1 - 12 T + p T^{2} \) |
| 71 | \( 1 - 10 T + p T^{2} \) |
| 73 | \( 1 - 11 T + p T^{2} \) |
| 79 | \( 1 - 2 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 - 16 T + p T^{2} \) |
| 97 | \( 1 + 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.433548470637644072669686071348, −8.626470330066807396264615662716, −7.78997306487226182646384131671, −6.65430570134456255086455486851, −6.09174406445201527513865362791, −5.00007502799761395288419220728, −3.98790135972688185122818775592, −3.62666575170944973731750940171, −2.43502883288959516917088648342, 0,
2.43502883288959516917088648342, 3.62666575170944973731750940171, 3.98790135972688185122818775592, 5.00007502799761395288419220728, 6.09174406445201527513865362791, 6.65430570134456255086455486851, 7.78997306487226182646384131671, 8.626470330066807396264615662716, 9.433548470637644072669686071348