L(s) = 1 | + 2·2-s + 2·4-s − 3·5-s − 7-s − 3·9-s − 6·10-s + 3·11-s − 2·14-s − 4·16-s − 3·17-s − 6·18-s − 19-s − 6·20-s + 6·22-s − 8·23-s + 4·25-s − 2·28-s + 2·29-s − 2·31-s − 8·32-s − 6·34-s + 3·35-s − 6·36-s − 4·37-s − 2·38-s + 6·41-s − 5·43-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 1.34·5-s − 0.377·7-s − 9-s − 1.89·10-s + 0.904·11-s − 0.534·14-s − 16-s − 0.727·17-s − 1.41·18-s − 0.229·19-s − 1.34·20-s + 1.27·22-s − 1.66·23-s + 4/5·25-s − 0.377·28-s + 0.371·29-s − 0.359·31-s − 1.41·32-s − 1.02·34-s + 0.507·35-s − 36-s − 0.657·37-s − 0.324·38-s + 0.937·41-s − 0.762·43-s + ⋯ |
Λ(s)=(=(1007s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1007s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 19 | 1+T |
| 53 | 1+T |
good | 2 | 1−pT+pT2 |
| 3 | 1+pT2 |
| 5 | 1+3T+pT2 |
| 7 | 1+T+pT2 |
| 11 | 1−3T+pT2 |
| 13 | 1+pT2 |
| 17 | 1+3T+pT2 |
| 23 | 1+8T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1+4T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+5T+pT2 |
| 47 | 1−13T+pT2 |
| 59 | 1+14T+pT2 |
| 61 | 1−T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1−10T+pT2 |
| 73 | 1−11T+pT2 |
| 79 | 1−2T+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1−16T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.433548470637644072669686071348, −8.626470330066807396264615662716, −7.78997306487226182646384131671, −6.65430570134456255086455486851, −6.09174406445201527513865362791, −5.00007502799761395288419220728, −3.98790135972688185122818775592, −3.62666575170944973731750940171, −2.43502883288959516917088648342, 0,
2.43502883288959516917088648342, 3.62666575170944973731750940171, 3.98790135972688185122818775592, 5.00007502799761395288419220728, 6.09174406445201527513865362791, 6.65430570134456255086455486851, 7.78997306487226182646384131671, 8.626470330066807396264615662716, 9.433548470637644072669686071348