Properties

Label 2-103428-1.1-c1-0-23
Degree $2$
Conductor $103428$
Sign $-1$
Analytic cond. $825.876$
Root an. cond. $28.7380$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 17-s + 6·19-s + 8·23-s − 5·25-s − 10·29-s + 10·31-s + 2·37-s − 4·41-s + 12·43-s − 12·47-s − 3·49-s + 2·53-s + 10·61-s − 6·67-s − 4·71-s − 10·73-s − 8·79-s − 12·89-s + 6·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 2·119-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.242·17-s + 1.37·19-s + 1.66·23-s − 25-s − 1.85·29-s + 1.79·31-s + 0.328·37-s − 0.624·41-s + 1.82·43-s − 1.75·47-s − 3/7·49-s + 0.274·53-s + 1.28·61-s − 0.733·67-s − 0.474·71-s − 1.17·73-s − 0.900·79-s − 1.27·89-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 0.183·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103428 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103428 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103428\)    =    \(2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(825.876\)
Root analytic conductor: \(28.7380\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 103428,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 4 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 6 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.15401619273066, −13.36249012802750, −13.07113670495462, −12.63766641979197, −11.67167189964776, −11.52712136387246, −11.32457601935092, −10.51027966738228, −10.01246055965879, −9.525856466187179, −9.026887349449478, −8.523652757911670, −7.906146444072465, −7.448346736254589, −7.125532963400858, −6.317567769079730, −5.819504401137548, −5.193137957836686, −4.830445276915432, −4.190240642975473, −3.532985917305665, −2.927501274580201, −2.324443818309210, −1.470579670710227, −1.053996848182529, 0, 1.053996848182529, 1.470579670710227, 2.324443818309210, 2.927501274580201, 3.532985917305665, 4.190240642975473, 4.830445276915432, 5.193137957836686, 5.819504401137548, 6.317567769079730, 7.125532963400858, 7.448346736254589, 7.906146444072465, 8.523652757911670, 9.026887349449478, 9.525856466187179, 10.01246055965879, 10.51027966738228, 11.32457601935092, 11.52712136387246, 11.67167189964776, 12.63766641979197, 13.07113670495462, 13.36249012802750, 14.15401619273066

Graph of the $Z$-function along the critical line