L(s) = 1 | − 2-s + 4-s − 4·5-s + 4·7-s − 8-s − 3·9-s + 4·10-s − 2·11-s − 2·13-s − 4·14-s + 16-s + 2·17-s + 3·18-s + 2·19-s − 4·20-s + 2·22-s + 11·25-s + 2·26-s + 4·28-s + 2·29-s − 32-s − 2·34-s − 16·35-s − 3·36-s + 4·37-s − 2·38-s + 4·40-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 1.78·5-s + 1.51·7-s − 0.353·8-s − 9-s + 1.26·10-s − 0.603·11-s − 0.554·13-s − 1.06·14-s + 1/4·16-s + 0.485·17-s + 0.707·18-s + 0.458·19-s − 0.894·20-s + 0.426·22-s + 11/5·25-s + 0.392·26-s + 0.755·28-s + 0.371·29-s − 0.176·32-s − 0.342·34-s − 2.70·35-s − 1/2·36-s + 0.657·37-s − 0.324·38-s + 0.632·40-s + ⋯ |
Λ(s)=(=(1058s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1058s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7583301280 |
L(21) |
≈ |
0.7583301280 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 23 | 1 |
good | 3 | 1+pT2 |
| 5 | 1+4T+pT2 |
| 7 | 1−4T+pT2 |
| 11 | 1+2T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1−2T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+pT2 |
| 37 | 1−4T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+10T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−4T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1−10T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1−12T+pT2 |
| 83 | 1+14T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.947689550336840395250376815301, −8.683650556938610005541061706290, −8.159724093271066632099122061158, −7.76953499301176804540241574451, −6.97395956350401904764981202712, −5.45714573817728122372138066179, −4.72575079143831508702325515450, −3.56810168580414870732367804186, −2.44935456312664529103463287959, −0.73237197917342842336436187115,
0.73237197917342842336436187115, 2.44935456312664529103463287959, 3.56810168580414870732367804186, 4.72575079143831508702325515450, 5.45714573817728122372138066179, 6.97395956350401904764981202712, 7.76953499301176804540241574451, 8.159724093271066632099122061158, 8.683650556938610005541061706290, 9.947689550336840395250376815301