Properties

Label 2-1058-1.1-c1-0-3
Degree $2$
Conductor $1058$
Sign $1$
Analytic cond. $8.44817$
Root an. cond. $2.90657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 4·5-s + 4·7-s − 8-s − 3·9-s + 4·10-s − 2·11-s − 2·13-s − 4·14-s + 16-s + 2·17-s + 3·18-s + 2·19-s − 4·20-s + 2·22-s + 11·25-s + 2·26-s + 4·28-s + 2·29-s − 32-s − 2·34-s − 16·35-s − 3·36-s + 4·37-s − 2·38-s + 4·40-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.78·5-s + 1.51·7-s − 0.353·8-s − 9-s + 1.26·10-s − 0.603·11-s − 0.554·13-s − 1.06·14-s + 1/4·16-s + 0.485·17-s + 0.707·18-s + 0.458·19-s − 0.894·20-s + 0.426·22-s + 11/5·25-s + 0.392·26-s + 0.755·28-s + 0.371·29-s − 0.176·32-s − 0.342·34-s − 2.70·35-s − 1/2·36-s + 0.657·37-s − 0.324·38-s + 0.632·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1058 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1058 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1058\)    =    \(2 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(8.44817\)
Root analytic conductor: \(2.90657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1058,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7583301280\)
\(L(\frac12)\) \(\approx\) \(0.7583301280\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
23 \( 1 \)
good3 \( 1 + p T^{2} \)
5 \( 1 + 4 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + 14 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.947689550336840395250376815301, −8.683650556938610005541061706290, −8.159724093271066632099122061158, −7.76953499301176804540241574451, −6.97395956350401904764981202712, −5.45714573817728122372138066179, −4.72575079143831508702325515450, −3.56810168580414870732367804186, −2.44935456312664529103463287959, −0.73237197917342842336436187115, 0.73237197917342842336436187115, 2.44935456312664529103463287959, 3.56810168580414870732367804186, 4.72575079143831508702325515450, 5.45714573817728122372138066179, 6.97395956350401904764981202712, 7.76953499301176804540241574451, 8.159724093271066632099122061158, 8.683650556938610005541061706290, 9.947689550336840395250376815301

Graph of the $Z$-function along the critical line