L(s) = 1 | − 2·4-s + 7·13-s + 4·16-s − 7·19-s − 7·31-s + 37-s − 5·43-s − 14·52-s + 14·61-s − 8·64-s − 11·67-s + 7·73-s + 14·76-s − 13·79-s − 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
L(s) = 1 | − 4-s + 1.94·13-s + 16-s − 1.60·19-s − 1.25·31-s + 0.164·37-s − 0.762·43-s − 1.94·52-s + 1.79·61-s − 64-s − 1.34·67-s + 0.819·73-s + 1.60·76-s − 1.46·79-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - 7 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + 7 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 7 T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 5 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 14 T + p T^{2} \) |
| 67 | \( 1 + 11 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 7 T + p T^{2} \) |
| 79 | \( 1 + 13 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.71375988647405, −16.35846470714573, −15.59845818185305, −15.00084486652746, −14.49174960868833, −13.86758950985686, −13.25204381064757, −12.97124369243016, −12.39577256882688, −11.45644965958982, −10.96763192907953, −10.39934631052245, −9.759612467709412, −8.937942024296082, −8.599436641612125, −8.178799140872350, −7.264553790946686, −6.415844632298848, −5.903067051363179, −5.227559122189026, −4.328793953204915, −3.872653074450142, −3.224339270854155, −1.993602805120383, −1.121051020092006, 0,
1.121051020092006, 1.993602805120383, 3.224339270854155, 3.872653074450142, 4.328793953204915, 5.227559122189026, 5.903067051363179, 6.415844632298848, 7.264553790946686, 8.178799140872350, 8.599436641612125, 8.937942024296082, 9.759612467709412, 10.39934631052245, 10.96763192907953, 11.45644965958982, 12.39577256882688, 12.97124369243016, 13.25204381064757, 13.86758950985686, 14.49174960868833, 15.00084486652746, 15.59845818185305, 16.35846470714573, 16.71375988647405