L(s) = 1 | + 3-s + 9-s + 4·11-s − 6·13-s + 6·17-s − 4·19-s − 4·23-s + 27-s − 2·29-s + 8·31-s + 4·33-s − 6·37-s − 6·39-s − 6·41-s + 8·43-s + 6·51-s − 6·53-s − 4·57-s − 4·59-s − 10·61-s + 8·67-s − 4·69-s − 12·71-s − 14·73-s + 16·79-s + 81-s + 12·83-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 1.20·11-s − 1.66·13-s + 1.45·17-s − 0.917·19-s − 0.834·23-s + 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.696·33-s − 0.986·37-s − 0.960·39-s − 0.937·41-s + 1.21·43-s + 0.840·51-s − 0.824·53-s − 0.529·57-s − 0.520·59-s − 1.28·61-s + 0.977·67-s − 0.481·69-s − 1.42·71-s − 1.63·73-s + 1.80·79-s + 1/9·81-s + 1.31·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 + 6 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 8 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 - 8 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 + 14 T + p T^{2} \) |
| 79 | \( 1 - 16 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 + 14 T + p T^{2} \) |
| 97 | \( 1 - 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.06499144178908, −13.45786017725805, −12.75600097515275, −12.22473064871721, −12.05810305294785, −11.67988082176298, −10.71546907892499, −10.38307106858261, −9.814288742705464, −9.473899112565849, −9.028677632984692, −8.300914787668901, −7.988885851750805, −7.360443468659168, −6.996481376356118, −6.306604465866965, −5.888667256297956, −5.139560285240066, −4.514421346305765, −4.195823976357878, −3.357577190675514, −3.033508871734043, −2.171360028333785, −1.744593795024749, −0.9376168547004779, 0,
0.9376168547004779, 1.744593795024749, 2.171360028333785, 3.033508871734043, 3.357577190675514, 4.195823976357878, 4.514421346305765, 5.139560285240066, 5.888667256297956, 6.306604465866965, 6.996481376356118, 7.360443468659168, 7.988885851750805, 8.300914787668901, 9.028677632984692, 9.473899112565849, 9.814288742705464, 10.38307106858261, 10.71546907892499, 11.67988082176298, 12.05810305294785, 12.22473064871721, 12.75600097515275, 13.45786017725805, 14.06499144178908