L(s) = 1 | + 4·7-s + 11-s + 2·13-s + 3·17-s + 4·19-s − 6·23-s + 6·29-s − 5·31-s + 2·37-s − 3·41-s − 8·43-s + 6·47-s + 9·49-s − 12·53-s − 6·59-s − 4·61-s − 5·67-s + 12·71-s + 2·73-s + 4·77-s + 10·79-s + 9·83-s + 18·89-s + 8·91-s − 97-s + 101-s + 103-s + ⋯ |
L(s) = 1 | + 1.51·7-s + 0.301·11-s + 0.554·13-s + 0.727·17-s + 0.917·19-s − 1.25·23-s + 1.11·29-s − 0.898·31-s + 0.328·37-s − 0.468·41-s − 1.21·43-s + 0.875·47-s + 9/7·49-s − 1.64·53-s − 0.781·59-s − 0.512·61-s − 0.610·67-s + 1.42·71-s + 0.234·73-s + 0.455·77-s + 1.12·79-s + 0.987·83-s + 1.90·89-s + 0.838·91-s − 0.101·97-s + 0.0995·101-s + 0.0985·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 118800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 118800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.778335631\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.778335631\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 7 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 - 3 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 + 5 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 + 3 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 + 12 T + p T^{2} \) |
| 59 | \( 1 + 6 T + p T^{2} \) |
| 61 | \( 1 + 4 T + p T^{2} \) |
| 67 | \( 1 + 5 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 - 10 T + p T^{2} \) |
| 83 | \( 1 - 9 T + p T^{2} \) |
| 89 | \( 1 - 18 T + p T^{2} \) |
| 97 | \( 1 + T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.74540224369684, −13.21641322451448, −12.38696326711440, −12.06335452519689, −11.72851527803853, −11.13850093430593, −10.76194389172191, −10.23225020667047, −9.661591095635382, −9.165470782382390, −8.553163364134243, −8.086407162849880, −7.729019757041997, −7.321352964515868, −6.403852433019532, −6.136165997410227, −5.373663060150516, −4.931139653013213, −4.539698401419140, −3.662598855632647, −3.420171203146060, −2.474051113354234, −1.762515033328033, −1.369962923142672, −0.6182185328294570,
0.6182185328294570, 1.369962923142672, 1.762515033328033, 2.474051113354234, 3.420171203146060, 3.662598855632647, 4.539698401419140, 4.931139653013213, 5.373663060150516, 6.136165997410227, 6.403852433019532, 7.321352964515868, 7.729019757041997, 8.086407162849880, 8.553163364134243, 9.165470782382390, 9.661591095635382, 10.23225020667047, 10.76194389172191, 11.13850093430593, 11.72851527803853, 12.06335452519689, 12.38696326711440, 13.21641322451448, 13.74540224369684