L(s) = 1 | + 4·7-s − 2·13-s − 6·17-s − 4·23-s − 2·29-s − 8·31-s + 6·37-s + 6·41-s + 12·43-s − 12·47-s + 9·49-s + 10·53-s + 8·59-s + 10·61-s − 12·67-s − 8·71-s − 10·73-s + 16·79-s − 12·83-s + 6·89-s − 8·91-s − 18·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
L(s) = 1 | + 1.51·7-s − 0.554·13-s − 1.45·17-s − 0.834·23-s − 0.371·29-s − 1.43·31-s + 0.986·37-s + 0.937·41-s + 1.82·43-s − 1.75·47-s + 9/7·49-s + 1.37·53-s + 1.04·59-s + 1.28·61-s − 1.46·67-s − 0.949·71-s − 1.17·73-s + 1.80·79-s − 1.31·83-s + 0.635·89-s − 0.838·91-s − 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 + 12 T + p T^{2} \) |
| 53 | \( 1 - 10 T + p T^{2} \) |
| 59 | \( 1 - 8 T + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 - 16 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.25982412412648, −15.97908781187501, −15.03326687423519, −14.65750285490969, −14.44343657562160, −13.52449082514230, −13.14588704310483, −12.42000753737975, −11.77882977699796, −11.18499345098731, −10.97259720138072, −10.18157758586617, −9.444768105655394, −8.855882060879666, −8.326459252284200, −7.581459584195255, −7.283725105830698, −6.357597776312737, −5.629727833823217, −5.052097589078270, −4.282340785909847, −3.960793760079985, −2.579342881550402, −2.126124493961775, −1.266047971735512, 0,
1.266047971735512, 2.126124493961775, 2.579342881550402, 3.960793760079985, 4.282340785909847, 5.052097589078270, 5.629727833823217, 6.357597776312737, 7.283725105830698, 7.581459584195255, 8.326459252284200, 8.855882060879666, 9.444768105655394, 10.18157758586617, 10.97259720138072, 11.18499345098731, 11.77882977699796, 12.42000753737975, 13.14588704310483, 13.52449082514230, 14.44343657562160, 14.65750285490969, 15.03326687423519, 15.97908781187501, 16.25982412412648