Properties

Label 2-14896-1.1-c1-0-9
Degree $2$
Conductor $14896$
Sign $1$
Analytic cond. $118.945$
Root an. cond. $10.9061$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·9-s + 6·11-s − 5·13-s − 3·17-s + 19-s − 3·23-s − 5·25-s − 5·27-s + 9·29-s − 4·31-s + 6·33-s + 2·37-s − 5·39-s − 8·43-s − 3·51-s − 3·53-s + 57-s + 9·59-s + 10·61-s − 5·67-s − 3·69-s + 6·71-s + 7·73-s − 5·75-s + 10·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s − 2/3·9-s + 1.80·11-s − 1.38·13-s − 0.727·17-s + 0.229·19-s − 0.625·23-s − 25-s − 0.962·27-s + 1.67·29-s − 0.718·31-s + 1.04·33-s + 0.328·37-s − 0.800·39-s − 1.21·43-s − 0.420·51-s − 0.412·53-s + 0.132·57-s + 1.17·59-s + 1.28·61-s − 0.610·67-s − 0.361·69-s + 0.712·71-s + 0.819·73-s − 0.577·75-s + 1.12·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14896\)    =    \(2^{4} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(118.945\)
Root analytic conductor: \(10.9061\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14896,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.143775443\)
\(L(\frac12)\) \(\approx\) \(2.143775443\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 - 9 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 5 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.05710859748804, −15.37174194663751, −14.79935216780154, −14.37789233563134, −14.01621114862507, −13.46000282716391, −12.65482892440077, −11.97007488543712, −11.70331043719405, −11.17036498275232, −10.13930753141360, −9.735926858147792, −9.175570415261606, −8.625211646209566, −8.065793249441136, −7.352954754420931, −6.651945142688034, −6.220737471876189, −5.326076063291418, −4.612544359363297, −3.895725658864953, −3.306235687675479, −2.365648774826446, −1.854944444729453, −0.5998812622591777, 0.5998812622591777, 1.854944444729453, 2.365648774826446, 3.306235687675479, 3.895725658864953, 4.612544359363297, 5.326076063291418, 6.220737471876189, 6.651945142688034, 7.352954754420931, 8.065793249441136, 8.625211646209566, 9.175570415261606, 9.735926858147792, 10.13930753141360, 11.17036498275232, 11.70331043719405, 11.97007488543712, 12.65482892440077, 13.46000282716391, 14.01621114862507, 14.37789233563134, 14.79935216780154, 15.37174194663751, 16.05710859748804

Graph of the $Z$-function along the critical line