Properties

Label 2-15456-1.1-c1-0-16
Degree $2$
Conductor $15456$
Sign $-1$
Analytic cond. $123.416$
Root an. cond. $11.1093$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 7-s + 9-s − 2·15-s + 2·19-s + 21-s + 23-s − 25-s + 27-s + 6·29-s − 6·31-s − 2·35-s − 6·37-s − 2·41-s − 2·45-s − 6·47-s + 49-s − 10·53-s + 2·57-s + 12·59-s + 2·61-s + 63-s − 8·67-s + 69-s + 4·71-s + 14·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 0.377·7-s + 1/3·9-s − 0.516·15-s + 0.458·19-s + 0.218·21-s + 0.208·23-s − 1/5·25-s + 0.192·27-s + 1.11·29-s − 1.07·31-s − 0.338·35-s − 0.986·37-s − 0.312·41-s − 0.298·45-s − 0.875·47-s + 1/7·49-s − 1.37·53-s + 0.264·57-s + 1.56·59-s + 0.256·61-s + 0.125·63-s − 0.977·67-s + 0.120·69-s + 0.474·71-s + 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15456\)    =    \(2^{5} \cdot 3 \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(123.416\)
Root analytic conductor: \(11.1093\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 15456,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
23 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.10555942276634, −15.74274816560423, −15.19122966434810, −14.60858356299189, −14.19055018182533, −13.56509180900508, −12.98199863815776, −12.28902257082646, −11.88024575898632, −11.23599608619931, −10.73269056655203, −9.994586645592473, −9.422152955207514, −8.728868051909036, −8.166945512697150, −7.794467891403980, −7.051434037027880, −6.589969506622638, −5.533048697322881, −4.956227228978669, −4.208379786229513, −3.591079860284131, −2.990612346941021, −2.051625024283689, −1.196766132841192, 0, 1.196766132841192, 2.051625024283689, 2.990612346941021, 3.591079860284131, 4.208379786229513, 4.956227228978669, 5.533048697322881, 6.589969506622638, 7.051434037027880, 7.794467891403980, 8.166945512697150, 8.728868051909036, 9.422152955207514, 9.994586645592473, 10.73269056655203, 11.23599608619931, 11.88024575898632, 12.28902257082646, 12.98199863815776, 13.56509180900508, 14.19055018182533, 14.60858356299189, 15.19122966434810, 15.74274816560423, 16.10555942276634

Graph of the $Z$-function along the critical line