Properties

Label 2-1620-1.1-c1-0-11
Degree $2$
Conductor $1620$
Sign $-1$
Analytic cond. $12.9357$
Root an. cond. $3.59663$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 4·13-s + 6·17-s + 2·19-s + 3·23-s + 25-s − 3·29-s − 10·31-s + 35-s − 10·37-s − 9·41-s − 4·43-s − 9·47-s − 6·49-s + 6·53-s + 6·59-s − 61-s + 4·65-s + 11·67-s − 12·71-s − 4·73-s − 10·79-s + 9·83-s − 6·85-s − 9·89-s + 4·91-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 1.10·13-s + 1.45·17-s + 0.458·19-s + 0.625·23-s + 1/5·25-s − 0.557·29-s − 1.79·31-s + 0.169·35-s − 1.64·37-s − 1.40·41-s − 0.609·43-s − 1.31·47-s − 6/7·49-s + 0.824·53-s + 0.781·59-s − 0.128·61-s + 0.496·65-s + 1.34·67-s − 1.42·71-s − 0.468·73-s − 1.12·79-s + 0.987·83-s − 0.650·85-s − 0.953·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1620\)    =    \(2^{2} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(12.9357\)
Root analytic conductor: \(3.59663\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1620,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 - 11 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.043634591279437674764537386020, −8.141192045226530434627876867521, −7.31822298979684289202063864666, −6.83635174647266887831894723830, −5.49101651268431564294300540447, −5.04137166685164779548220242774, −3.68962627737164877946147647403, −3.09079251998438082851459055329, −1.66007070887730146878983616089, 0, 1.66007070887730146878983616089, 3.09079251998438082851459055329, 3.68962627737164877946147647403, 5.04137166685164779548220242774, 5.49101651268431564294300540447, 6.83635174647266887831894723830, 7.31822298979684289202063864666, 8.141192045226530434627876867521, 9.043634591279437674764537386020

Graph of the $Z$-function along the critical line