L(s) = 1 | − 5-s − 7-s − 4·13-s + 6·17-s + 2·19-s + 3·23-s + 25-s − 3·29-s − 10·31-s + 35-s − 10·37-s − 9·41-s − 4·43-s − 9·47-s − 6·49-s + 6·53-s + 6·59-s − 61-s + 4·65-s + 11·67-s − 12·71-s − 4·73-s − 10·79-s + 9·83-s − 6·85-s − 9·89-s + 4·91-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.377·7-s − 1.10·13-s + 1.45·17-s + 0.458·19-s + 0.625·23-s + 1/5·25-s − 0.557·29-s − 1.79·31-s + 0.169·35-s − 1.64·37-s − 1.40·41-s − 0.609·43-s − 1.31·47-s − 6/7·49-s + 0.824·53-s + 0.781·59-s − 0.128·61-s + 0.496·65-s + 1.34·67-s − 1.42·71-s − 0.468·73-s − 1.12·79-s + 0.987·83-s − 0.650·85-s − 0.953·89-s + 0.419·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 + T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 - 2 T + p T^{2} \) |
| 23 | \( 1 - 3 T + p T^{2} \) |
| 29 | \( 1 + 3 T + p T^{2} \) |
| 31 | \( 1 + 10 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 + 9 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + 9 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 - 6 T + p T^{2} \) |
| 61 | \( 1 + T + p T^{2} \) |
| 67 | \( 1 - 11 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 + 4 T + p T^{2} \) |
| 79 | \( 1 + 10 T + p T^{2} \) |
| 83 | \( 1 - 9 T + p T^{2} \) |
| 89 | \( 1 + 9 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.043634591279437674764537386020, −8.141192045226530434627876867521, −7.31822298979684289202063864666, −6.83635174647266887831894723830, −5.49101651268431564294300540447, −5.04137166685164779548220242774, −3.68962627737164877946147647403, −3.09079251998438082851459055329, −1.66007070887730146878983616089, 0,
1.66007070887730146878983616089, 3.09079251998438082851459055329, 3.68962627737164877946147647403, 5.04137166685164779548220242774, 5.49101651268431564294300540447, 6.83635174647266887831894723830, 7.31822298979684289202063864666, 8.141192045226530434627876867521, 9.043634591279437674764537386020