L(s) = 1 | + 5·7-s + 7·13-s + 19-s − 5·25-s − 4·31-s + 37-s − 8·43-s + 18·49-s + 13·61-s − 11·67-s + 17·73-s − 13·79-s + 35·91-s + 5·97-s − 7·103-s − 2·109-s + ⋯ |
L(s) = 1 | + 1.88·7-s + 1.94·13-s + 0.229·19-s − 25-s − 0.718·31-s + 0.164·37-s − 1.21·43-s + 18/7·49-s + 1.66·61-s − 1.34·67-s + 1.98·73-s − 1.46·79-s + 3.66·91-s + 0.507·97-s − 0.689·103-s − 0.191·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.360844297\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.360844297\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + p T^{2} \) |
| 7 | \( 1 - 5 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - 7 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 - T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 13 T + p T^{2} \) |
| 67 | \( 1 + 11 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 17 T + p T^{2} \) |
| 79 | \( 1 + 13 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 - 5 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.125589838381877994041862400986, −8.360413074571016534853094652479, −8.001529503824122494641395863146, −7.02193571198558069600312241264, −5.94215330426161837619813679812, −5.28577670060288457890184502723, −4.31915400924746551561976811972, −3.53995560336243251785891738493, −2.01230440740899716446600775646, −1.20941721581339133701993176268,
1.20941721581339133701993176268, 2.01230440740899716446600775646, 3.53995560336243251785891738493, 4.31915400924746551561976811972, 5.28577670060288457890184502723, 5.94215330426161837619813679812, 7.02193571198558069600312241264, 8.001529503824122494641395863146, 8.360413074571016534853094652479, 9.125589838381877994041862400986