Properties

Label 2-420e2-1.1-c1-0-178
Degree $2$
Conductor $176400$
Sign $-1$
Analytic cond. $1408.56$
Root an. cond. $37.5308$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·11-s − 6·13-s + 2·17-s − 8·19-s − 4·23-s − 6·29-s + 4·31-s + 2·37-s − 2·41-s − 12·43-s + 2·53-s + 4·59-s − 6·61-s − 4·67-s + 8·71-s + 6·73-s + 16·79-s − 4·83-s − 18·89-s + 6·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.20·11-s − 1.66·13-s + 0.485·17-s − 1.83·19-s − 0.834·23-s − 1.11·29-s + 0.718·31-s + 0.328·37-s − 0.312·41-s − 1.82·43-s + 0.274·53-s + 0.520·59-s − 0.768·61-s − 0.488·67-s + 0.949·71-s + 0.702·73-s + 1.80·79-s − 0.439·83-s − 1.90·89-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 176400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(176400\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(1408.56\)
Root analytic conductor: \(37.5308\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 176400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29989630081279, −12.88817925524109, −12.51792923310917, −12.13521241601464, −11.48801870895328, −11.12330411536522, −10.38363176547975, −10.06287920873662, −9.907524589797490, −9.111260478667703, −8.574022328210184, −8.079100984757359, −7.664832714625015, −7.275312997746144, −6.552714641811738, −6.181406340075739, −5.486648871962378, −4.982903186648741, −4.661615197743061, −3.971748798082462, −3.351122316033558, −2.668425604762867, −2.150683542552333, −1.809817461518069, −0.5521525087696206, 0, 0.5521525087696206, 1.809817461518069, 2.150683542552333, 2.668425604762867, 3.351122316033558, 3.971748798082462, 4.661615197743061, 4.982903186648741, 5.486648871962378, 6.181406340075739, 6.552714641811738, 7.275312997746144, 7.664832714625015, 8.079100984757359, 8.574022328210184, 9.111260478667703, 9.907524589797490, 10.06287920873662, 10.38363176547975, 11.12330411536522, 11.48801870895328, 12.13521241601464, 12.51792923310917, 12.88817925524109, 13.29989630081279

Graph of the $Z$-function along the critical line