Properties

Label 2-187200-1.1-c1-0-87
Degree $2$
Conductor $187200$
Sign $-1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·7-s − 5·11-s + 13-s − 3·17-s − 4·19-s − 5·23-s − 4·29-s − 7·37-s − 11·41-s + 12·43-s − 6·47-s + 18·49-s − 53-s − 12·59-s + 7·61-s − 4·67-s − 7·71-s + 14·73-s + 25·77-s + 5·79-s − 2·83-s + 3·89-s − 5·91-s + 97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.88·7-s − 1.50·11-s + 0.277·13-s − 0.727·17-s − 0.917·19-s − 1.04·23-s − 0.742·29-s − 1.15·37-s − 1.71·41-s + 1.82·43-s − 0.875·47-s + 18/7·49-s − 0.137·53-s − 1.56·59-s + 0.896·61-s − 0.488·67-s − 0.830·71-s + 1.63·73-s + 2.84·77-s + 0.562·79-s − 0.219·83-s + 0.317·89-s − 0.524·91-s + 0.101·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 5 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 5 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + 11 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 - T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.24670777021240, −12.95257808235974, −12.37882568251914, −12.31541393573097, −11.38827482365339, −10.91282620231018, −10.38855066627726, −10.17204789115895, −9.642078898206039, −9.071052695206875, −8.713023967415252, −8.081733126202525, −7.609035798767324, −7.029412905650993, −6.477480835436962, −6.221654357219600, −5.593776214209412, −5.138742415159193, −4.401350371937550, −3.798846471355767, −3.394891778331966, −2.740944156482537, −2.305363667827032, −1.657424185199093, −0.4158300861552570, 0, 0.4158300861552570, 1.657424185199093, 2.305363667827032, 2.740944156482537, 3.394891778331966, 3.798846471355767, 4.401350371937550, 5.138742415159193, 5.593776214209412, 6.221654357219600, 6.477480835436962, 7.029412905650993, 7.609035798767324, 8.081733126202525, 8.713023967415252, 9.071052695206875, 9.642078898206039, 10.17204789115895, 10.38855066627726, 10.91282620231018, 11.38827482365339, 12.31541393573097, 12.37882568251914, 12.95257808235974, 13.24670777021240

Graph of the $Z$-function along the critical line