Properties

Label 2-187200-1.1-c1-0-83
Degree $2$
Conductor $187200$
Sign $1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·7-s + 3·11-s − 13-s − 3·17-s − 4·19-s + 6·23-s + 9·29-s − 5·31-s − 2·37-s + 2·43-s − 9·47-s + 18·49-s − 9·53-s + 9·59-s + 61-s + 5·67-s + 14·73-s − 15·77-s + 16·79-s + 15·83-s + 6·89-s + 5·91-s + 8·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 1.88·7-s + 0.904·11-s − 0.277·13-s − 0.727·17-s − 0.917·19-s + 1.25·23-s + 1.67·29-s − 0.898·31-s − 0.328·37-s + 0.304·43-s − 1.31·47-s + 18/7·49-s − 1.23·53-s + 1.17·59-s + 0.128·61-s + 0.610·67-s + 1.63·73-s − 1.70·77-s + 1.80·79-s + 1.64·83-s + 0.635·89-s + 0.524·91-s + 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.520718969\)
\(L(\frac12)\) \(\approx\) \(1.520718969\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 5 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 - 9 T + p T^{2} \)
61 \( 1 - T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.03554129951207, −12.72421198741360, −12.28484264689933, −11.85960656343306, −11.12497599607337, −10.80473602369601, −10.24404786171035, −9.713663894980344, −9.393801594234992, −8.871992753490416, −8.601610975231162, −7.812765632292146, −7.181163735185388, −6.601756296090522, −6.451829266732680, −6.183625063851971, −5.049534906879029, −4.956890299649504, −3.975173746795213, −3.678104062528048, −3.121213609797973, −2.521588879394229, −1.978648182425106, −0.9843020821504351, −0.4082036796554712, 0.4082036796554712, 0.9843020821504351, 1.978648182425106, 2.521588879394229, 3.121213609797973, 3.678104062528048, 3.975173746795213, 4.956890299649504, 5.049534906879029, 6.183625063851971, 6.451829266732680, 6.601756296090522, 7.181163735185388, 7.812765632292146, 8.601610975231162, 8.871992753490416, 9.393801594234992, 9.713663894980344, 10.24404786171035, 10.80473602369601, 11.12497599607337, 11.85960656343306, 12.28484264689933, 12.72421198741360, 13.03554129951207

Graph of the $Z$-function along the critical line