Properties

Label 2-19110-1.1-c1-0-49
Degree $2$
Conductor $19110$
Sign $-1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s + 6·11-s − 12-s − 13-s − 15-s + 16-s − 18-s − 8·19-s + 20-s − 6·22-s + 24-s + 25-s + 26-s − 27-s − 6·29-s + 30-s − 2·31-s − 32-s − 6·33-s + 36-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.80·11-s − 0.288·12-s − 0.277·13-s − 0.258·15-s + 1/4·16-s − 0.235·18-s − 1.83·19-s + 0.223·20-s − 1.27·22-s + 0.204·24-s + 1/5·25-s + 0.196·26-s − 0.192·27-s − 1.11·29-s + 0.182·30-s − 0.359·31-s − 0.176·32-s − 1.04·33-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 - 6 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.51968672814725, −15.25761740686544, −15.04203216106226, −14.57415535979741, −13.77347995838872, −13.24395555687491, −12.43898483989886, −12.15799571917868, −11.45264814274749, −11.00928323967556, −10.39451614855780, −9.893914301811817, −9.113882205546813, −8.949912229438682, −8.192390535161066, −7.301698385191597, −6.833601068859039, −6.275509880832092, −5.833903046939745, −4.984512822184941, −4.101757405047359, −3.703794212981875, −2.444577458373905, −1.819556041604228, −1.073408260765778, 0, 1.073408260765778, 1.819556041604228, 2.444577458373905, 3.703794212981875, 4.101757405047359, 4.984512822184941, 5.833903046939745, 6.275509880832092, 6.833601068859039, 7.301698385191597, 8.192390535161066, 8.949912229438682, 9.113882205546813, 9.893914301811817, 10.39451614855780, 11.00928323967556, 11.45264814274749, 12.15799571917868, 12.43898483989886, 13.24395555687491, 13.77347995838872, 14.57415535979741, 15.04203216106226, 15.25761740686544, 16.51968672814725

Graph of the $Z$-function along the critical line