Properties

Label 2-206310-1.1-c1-0-43
Degree $2$
Conductor $206310$
Sign $-1$
Analytic cond. $1647.39$
Root an. cond. $40.5880$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s − 6·11-s + 12-s + 13-s − 15-s + 16-s + 18-s − 7·19-s − 20-s − 6·22-s + 24-s + 25-s + 26-s + 27-s + 6·29-s − 30-s − 8·31-s + 32-s − 6·33-s + 36-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.80·11-s + 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s + 0.235·18-s − 1.60·19-s − 0.223·20-s − 1.27·22-s + 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s + 1.11·29-s − 0.182·30-s − 1.43·31-s + 0.176·32-s − 1.04·33-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 206310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 206310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(206310\)    =    \(2 \cdot 3 \cdot 5 \cdot 13 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(1647.39\)
Root analytic conductor: \(40.5880\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 206310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 - T \)
23 \( 1 \)
good7 \( 1 + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 11 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 13 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 15 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 - T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23512336332078, −12.80960710303265, −12.45954255260704, −12.16270430480726, −11.29052411105310, −10.86919014962025, −10.58820099663566, −10.20248418008071, −9.520434438088591, −8.760245521130473, −8.560594929687873, −8.017784307021825, −7.399476897835632, −7.271389082141524, −6.493797216923374, −5.929177766153494, −5.499878358408991, −4.836109630373675, −4.440132969797672, −3.921481988541060, −3.310153320199309, −2.805421914124977, −2.263275254231089, −1.844873268423982, −0.7907488274319100, 0, 0.7907488274319100, 1.844873268423982, 2.263275254231089, 2.805421914124977, 3.310153320199309, 3.921481988541060, 4.440132969797672, 4.836109630373675, 5.499878358408991, 5.929177766153494, 6.493797216923374, 7.271389082141524, 7.399476897835632, 8.017784307021825, 8.560594929687873, 8.760245521130473, 9.520434438088591, 10.20248418008071, 10.58820099663566, 10.86919014962025, 11.29052411105310, 12.16270430480726, 12.45954255260704, 12.80960710303265, 13.23512336332078

Graph of the $Z$-function along the critical line