L(s) = 1 | − 4·5-s − 3·7-s − 4·11-s + 13-s + 4·17-s − 19-s − 4·23-s + 11·25-s − 4·31-s + 12·35-s − 9·37-s − 8·43-s + 12·47-s + 2·49-s + 8·53-s + 16·55-s − 4·59-s − 5·61-s − 4·65-s + 11·67-s − 8·71-s + 73-s + 12·77-s − 5·79-s − 8·83-s − 16·85-s − 12·89-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 1.13·7-s − 1.20·11-s + 0.277·13-s + 0.970·17-s − 0.229·19-s − 0.834·23-s + 11/5·25-s − 0.718·31-s + 2.02·35-s − 1.47·37-s − 1.21·43-s + 1.75·47-s + 2/7·49-s + 1.09·53-s + 2.15·55-s − 0.520·59-s − 0.640·61-s − 0.496·65-s + 1.34·67-s − 0.949·71-s + 0.117·73-s + 1.36·77-s − 0.562·79-s − 0.878·83-s − 1.73·85-s − 1.27·89-s + ⋯ |
Λ(s)=(=(216s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(216s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+4T+pT2 |
| 7 | 1+3T+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1+T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1+9T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1−8T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1+5T+pT2 |
| 67 | 1−11T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1−T+pT2 |
| 79 | 1+5T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1+12T+pT2 |
| 97 | 1−5T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.03544564786177544377995408667, −10.86882134051916494593969688660, −10.05433643313669533911783232246, −8.655801172150449552881383118942, −7.79497553082532979201942816895, −6.95550481778817521461633350929, −5.48459428248370426498378218555, −3.99250331289836498435902686175, −3.09788365205681643264055516753, 0,
3.09788365205681643264055516753, 3.99250331289836498435902686175, 5.48459428248370426498378218555, 6.95550481778817521461633350929, 7.79497553082532979201942816895, 8.655801172150449552881383118942, 10.05433643313669533911783232246, 10.86882134051916494593969688660, 12.03544564786177544377995408667