L(s) = 1 | − 4·5-s − 3·7-s − 4·11-s + 13-s + 4·17-s − 19-s − 4·23-s + 11·25-s − 4·31-s + 12·35-s − 9·37-s − 8·43-s + 12·47-s + 2·49-s + 8·53-s + 16·55-s − 4·59-s − 5·61-s − 4·65-s + 11·67-s − 8·71-s + 73-s + 12·77-s − 5·79-s − 8·83-s − 16·85-s − 12·89-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 1.13·7-s − 1.20·11-s + 0.277·13-s + 0.970·17-s − 0.229·19-s − 0.834·23-s + 11/5·25-s − 0.718·31-s + 2.02·35-s − 1.47·37-s − 1.21·43-s + 1.75·47-s + 2/7·49-s + 1.09·53-s + 2.15·55-s − 0.520·59-s − 0.640·61-s − 0.496·65-s + 1.34·67-s − 0.949·71-s + 0.117·73-s + 1.36·77-s − 0.562·79-s − 0.878·83-s − 1.73·85-s − 1.27·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 4 T + p T^{2} \) |
| 7 | \( 1 + 3 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 - T + p T^{2} \) |
| 17 | \( 1 - 4 T + p T^{2} \) |
| 19 | \( 1 + T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 + 9 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 - 12 T + p T^{2} \) |
| 53 | \( 1 - 8 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 5 T + p T^{2} \) |
| 67 | \( 1 - 11 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - T + p T^{2} \) |
| 79 | \( 1 + 5 T + p T^{2} \) |
| 83 | \( 1 + 8 T + p T^{2} \) |
| 89 | \( 1 + 12 T + p T^{2} \) |
| 97 | \( 1 - 5 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.03544564786177544377995408667, −10.86882134051916494593969688660, −10.05433643313669533911783232246, −8.655801172150449552881383118942, −7.79497553082532979201942816895, −6.95550481778817521461633350929, −5.48459428248370426498378218555, −3.99250331289836498435902686175, −3.09788365205681643264055516753, 0,
3.09788365205681643264055516753, 3.99250331289836498435902686175, 5.48459428248370426498378218555, 6.95550481778817521461633350929, 7.79497553082532979201942816895, 8.655801172150449552881383118942, 10.05433643313669533911783232246, 10.86882134051916494593969688660, 12.03544564786177544377995408667