L(s) = 1 | − 2·4-s − 5·7-s − 5·13-s + 4·16-s − 19-s + 10·28-s − 7·31-s + 10·37-s − 5·43-s + 18·49-s + 10·52-s − 13·61-s − 8·64-s − 5·67-s + 10·73-s + 2·76-s − 4·79-s + 25·91-s − 5·97-s − 20·103-s − 19·109-s − 20·112-s + ⋯ |
L(s) = 1 | − 4-s − 1.88·7-s − 1.38·13-s + 16-s − 0.229·19-s + 1.88·28-s − 1.25·31-s + 1.64·37-s − 0.762·43-s + 18/7·49-s + 1.38·52-s − 1.66·61-s − 64-s − 0.610·67-s + 1.17·73-s + 0.229·76-s − 0.450·79-s + 2.62·91-s − 0.507·97-s − 1.97·103-s − 1.81·109-s − 1.88·112-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+pT2 |
| 7 | 1+5T+pT2 |
| 11 | 1+pT2 |
| 13 | 1+5T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+pT2 |
| 31 | 1+7T+pT2 |
| 37 | 1−10T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+5T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+pT2 |
| 59 | 1+pT2 |
| 61 | 1+13T+pT2 |
| 67 | 1+5T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1+pT2 |
| 89 | 1+pT2 |
| 97 | 1+5T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.11951399488920175322797663822, −10.49393585601286522315094653400, −9.599576350131101649309623215930, −9.206590206514279856778701903578, −7.75954149302713039814888795826, −6.62145632893118011347307968766, −5.46981299804941090347456591942, −4.14585724745469274814887485348, −2.93248946372060750659719660133, 0,
2.93248946372060750659719660133, 4.14585724745469274814887485348, 5.46981299804941090347456591942, 6.62145632893118011347307968766, 7.75954149302713039814888795826, 9.206590206514279856778701903578, 9.599576350131101649309623215930, 10.49393585601286522315094653400, 12.11951399488920175322797663822