Properties

Label 2-23275-1.1-c1-0-16
Degree $2$
Conductor $23275$
Sign $-1$
Analytic cond. $185.851$
Root an. cond. $13.6327$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 3·9-s − 4·11-s + 2·13-s − 16-s − 4·17-s + 3·18-s − 19-s + 4·22-s − 6·23-s − 2·26-s − 6·29-s + 4·31-s − 5·32-s + 4·34-s + 3·36-s − 10·37-s + 38-s + 10·41-s + 2·43-s + 4·44-s + 6·46-s + 6·47-s − 2·52-s + 10·53-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 9-s − 1.20·11-s + 0.554·13-s − 1/4·16-s − 0.970·17-s + 0.707·18-s − 0.229·19-s + 0.852·22-s − 1.25·23-s − 0.392·26-s − 1.11·29-s + 0.718·31-s − 0.883·32-s + 0.685·34-s + 1/2·36-s − 1.64·37-s + 0.162·38-s + 1.56·41-s + 0.304·43-s + 0.603·44-s + 0.884·46-s + 0.875·47-s − 0.277·52-s + 1.37·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23275\)    =    \(5^{2} \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(185.851\)
Root analytic conductor: \(13.6327\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + T + p T^{2} \)
3 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 18 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.80927037546874, −15.34469056627237, −14.59920217656141, −14.00353056475203, −13.55577503339657, −13.23198965962026, −12.47137782871371, −11.92897050442017, −11.09315478279226, −10.72903292838708, −10.35626718664521, −9.513586823604723, −9.100133175352587, −8.438119017371597, −8.160651458844081, −7.540779182409274, −6.853301141604641, −5.931613350329385, −5.558072484862187, −4.840219553666075, −4.106521831421743, −3.512497882161801, −2.451671303288168, −2.002941568472231, −0.7287804435836824, 0, 0.7287804435836824, 2.002941568472231, 2.451671303288168, 3.512497882161801, 4.106521831421743, 4.840219553666075, 5.558072484862187, 5.931613350329385, 6.853301141604641, 7.540779182409274, 8.160651458844081, 8.438119017371597, 9.100133175352587, 9.513586823604723, 10.35626718664521, 10.72903292838708, 11.09315478279226, 11.92897050442017, 12.47137782871371, 13.23198965962026, 13.55577503339657, 14.00353056475203, 14.59920217656141, 15.34469056627237, 15.80927037546874

Graph of the $Z$-function along the critical line