Properties

Label 2-2368-1.1-c1-0-27
Degree $2$
Conductor $2368$
Sign $1$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 7-s − 2·9-s − 11-s + 6·13-s + 2·15-s − 4·17-s + 8·19-s + 21-s + 6·23-s − 25-s − 5·27-s − 2·29-s − 4·31-s − 33-s + 2·35-s + 37-s + 6·39-s + 7·41-s − 2·43-s − 4·45-s + 9·47-s − 6·49-s − 4·51-s + 3·53-s − 2·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 0.377·7-s − 2/3·9-s − 0.301·11-s + 1.66·13-s + 0.516·15-s − 0.970·17-s + 1.83·19-s + 0.218·21-s + 1.25·23-s − 1/5·25-s − 0.962·27-s − 0.371·29-s − 0.718·31-s − 0.174·33-s + 0.338·35-s + 0.164·37-s + 0.960·39-s + 1.09·41-s − 0.304·43-s − 0.596·45-s + 1.31·47-s − 6/7·49-s − 0.560·51-s + 0.412·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $1$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.808314032\)
\(L(\frac12)\) \(\approx\) \(2.808314032\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.106986862927494823398773273392, −8.323706156991376435426293982790, −7.56200991672588442793948035593, −6.62515548141648090625940324832, −5.68536278134072713474064800006, −5.29977652365226555112580419353, −3.96828612768597928011477043556, −3.11027536009172942087782204014, −2.21589821767858410532420583902, −1.13230615835739562152636563080, 1.13230615835739562152636563080, 2.21589821767858410532420583902, 3.11027536009172942087782204014, 3.96828612768597928011477043556, 5.29977652365226555112580419353, 5.68536278134072713474064800006, 6.62515548141648090625940324832, 7.56200991672588442793948035593, 8.323706156991376435426293982790, 9.106986862927494823398773273392

Graph of the $Z$-function along the critical line