L(s) = 1 | − 4·11-s − 2·13-s + 17-s − 4·19-s − 10·29-s + 8·31-s − 2·37-s − 10·41-s + 12·43-s − 7·49-s − 6·53-s + 12·59-s + 10·61-s − 12·67-s − 10·73-s − 8·79-s − 4·83-s + 6·89-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
L(s) = 1 | − 1.20·11-s − 0.554·13-s + 0.242·17-s − 0.917·19-s − 1.85·29-s + 1.43·31-s − 0.328·37-s − 1.56·41-s + 1.82·43-s − 49-s − 0.824·53-s + 1.56·59-s + 1.28·61-s − 1.46·67-s − 1.17·73-s − 0.900·79-s − 0.439·83-s + 0.635·89-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 - T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 10 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 + 10 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 - 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.99566229688687, −12.88496339987523, −12.15443229088822, −11.70094742933712, −11.31574222467888, −10.62585427050169, −10.43488219974738, −9.819761208656495, −9.566878901725527, −8.701257003365823, −8.528294504462651, −7.900295856794826, −7.412926507217181, −7.130292421533244, −6.365487615492384, −5.950154905061894, −5.380872861696427, −4.957342709797696, −4.423127136170162, −3.869508308322296, −3.189775343389660, −2.697040256840693, −2.120297236742076, −1.613583590369521, −0.6225288146000435, 0,
0.6225288146000435, 1.613583590369521, 2.120297236742076, 2.697040256840693, 3.189775343389660, 3.869508308322296, 4.423127136170162, 4.957342709797696, 5.380872861696427, 5.950154905061894, 6.365487615492384, 7.130292421533244, 7.412926507217181, 7.900295856794826, 8.528294504462651, 8.701257003365823, 9.566878901725527, 9.819761208656495, 10.43488219974738, 10.62585427050169, 11.31574222467888, 11.70094742933712, 12.15443229088822, 12.88496339987523, 12.99566229688687