Properties

Label 2-267140-1.1-c1-0-1
Degree $2$
Conductor $267140$
Sign $-1$
Analytic cond. $2133.12$
Root an. cond. $46.1857$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s − 2·9-s − 3·11-s + 4·13-s + 15-s + 21-s + 25-s + 5·27-s − 2·31-s + 3·33-s + 35-s − 37-s − 4·39-s − 3·41-s + 2·43-s + 2·45-s + 3·47-s − 6·49-s + 9·53-s + 3·55-s + 2·61-s + 2·63-s − 4·65-s + 4·67-s − 15·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s − 2/3·9-s − 0.904·11-s + 1.10·13-s + 0.258·15-s + 0.218·21-s + 1/5·25-s + 0.962·27-s − 0.359·31-s + 0.522·33-s + 0.169·35-s − 0.164·37-s − 0.640·39-s − 0.468·41-s + 0.304·43-s + 0.298·45-s + 0.437·47-s − 6/7·49-s + 1.23·53-s + 0.404·55-s + 0.256·61-s + 0.251·63-s − 0.496·65-s + 0.488·67-s − 1.78·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 267140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 267140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(267140\)    =    \(2^{2} \cdot 5 \cdot 19^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(2133.12\)
Root analytic conductor: \(46.1857\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 267140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08407761250571, −12.45111872509364, −12.14111412246445, −11.48824887870282, −11.26202146531931, −10.82579160282917, −10.19995706259707, −10.11911369071362, −9.086139399918818, −8.925685488442119, −8.325640947344178, −7.960596608604999, −7.367781436247095, −6.857739110639926, −6.347049788911317, −5.825793331822417, −5.512087810800233, −4.953588286510042, −4.377277994784376, −3.762125776358129, −3.257787455261299, −2.787926493785209, −2.132627136677170, −1.315603257733466, −0.6112057937900737, 0, 0.6112057937900737, 1.315603257733466, 2.132627136677170, 2.787926493785209, 3.257787455261299, 3.762125776358129, 4.377277994784376, 4.953588286510042, 5.512087810800233, 5.825793331822417, 6.347049788911317, 6.857739110639926, 7.367781436247095, 7.960596608604999, 8.325640947344178, 8.925685488442119, 9.086139399918818, 10.11911369071362, 10.19995706259707, 10.82579160282917, 11.26202146531931, 11.48824887870282, 12.14111412246445, 12.45111872509364, 13.08407761250571

Graph of the $Z$-function along the critical line