Properties

Label 2-270504-1.1-c1-0-10
Degree $2$
Conductor $270504$
Sign $1$
Analytic cond. $2159.98$
Root an. cond. $46.4756$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s + 6·11-s − 13-s + 8·19-s + 6·23-s − 25-s + 8·29-s + 8·35-s + 2·37-s + 4·43-s − 8·47-s + 9·49-s + 6·53-s − 12·55-s − 12·59-s + 8·61-s + 2·65-s − 16·67-s − 8·71-s + 12·73-s − 24·77-s − 10·79-s − 16·83-s + 10·89-s + 4·91-s − 16·95-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s + 1.80·11-s − 0.277·13-s + 1.83·19-s + 1.25·23-s − 1/5·25-s + 1.48·29-s + 1.35·35-s + 0.328·37-s + 0.609·43-s − 1.16·47-s + 9/7·49-s + 0.824·53-s − 1.61·55-s − 1.56·59-s + 1.02·61-s + 0.248·65-s − 1.95·67-s − 0.949·71-s + 1.40·73-s − 2.73·77-s − 1.12·79-s − 1.75·83-s + 1.05·89-s + 0.419·91-s − 1.64·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270504\)    =    \(2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2159.98\)
Root analytic conductor: \(46.4756\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 270504,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.964084482\)
\(L(\frac12)\) \(\approx\) \(1.964084482\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 16 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 12 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.65545226784474, −12.22422881293828, −11.87507790892993, −11.55500776678159, −11.13339741061099, −10.29747839820272, −10.02780003836523, −9.377020288198173, −9.224999580680213, −8.752226355732340, −8.093061842170719, −7.470935432428962, −7.108975987058547, −6.743945383717074, −6.195754618713807, −5.831668181269084, −5.012176742647082, −4.547304303940333, −3.919905852267827, −3.551767770579516, −2.981952750066281, −2.763529135327556, −1.541358778826411, −1.039119944156591, −0.4498548207304795, 0.4498548207304795, 1.039119944156591, 1.541358778826411, 2.763529135327556, 2.981952750066281, 3.551767770579516, 3.919905852267827, 4.547304303940333, 5.012176742647082, 5.831668181269084, 6.195754618713807, 6.743945383717074, 7.108975987058547, 7.470935432428962, 8.093061842170719, 8.752226355732340, 9.224999580680213, 9.377020288198173, 10.02780003836523, 10.29747839820272, 11.13339741061099, 11.55500776678159, 11.87507790892993, 12.22422881293828, 12.65545226784474

Graph of the $Z$-function along the critical line