Properties

Label 2-270504-1.1-c1-0-31
Degree $2$
Conductor $270504$
Sign $-1$
Analytic cond. $2159.98$
Root an. cond. $46.4756$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 3·11-s + 13-s − 8·19-s + 6·23-s − 4·25-s + 6·29-s − 4·31-s + 2·35-s + 41-s − 7·43-s − 3·49-s − 2·53-s − 3·55-s + 4·59-s + 13·61-s − 65-s − 12·67-s + 4·73-s − 6·77-s + 9·79-s + 9·83-s + 89-s − 2·91-s + 8·95-s + 16·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 0.904·11-s + 0.277·13-s − 1.83·19-s + 1.25·23-s − 4/5·25-s + 1.11·29-s − 0.718·31-s + 0.338·35-s + 0.156·41-s − 1.06·43-s − 3/7·49-s − 0.274·53-s − 0.404·55-s + 0.520·59-s + 1.66·61-s − 0.124·65-s − 1.46·67-s + 0.468·73-s − 0.683·77-s + 1.01·79-s + 0.987·83-s + 0.105·89-s − 0.209·91-s + 0.820·95-s + 1.62·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270504\)    =    \(2^{3} \cdot 3^{2} \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2159.98\)
Root analytic conductor: \(46.4756\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 270504,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 - T + p T^{2} \)
43 \( 1 + 7 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 9 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 - T + p T^{2} \)
97 \( 1 - 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93692030144968, −12.68283807659909, −11.98938405591710, −11.73875428618710, −11.15053016786767, −10.76729779423252, −10.23273236803959, −9.828106613675302, −9.207434664642562, −8.825681574841088, −8.493375059020863, −7.887569702564939, −7.365026199542802, −6.733459139341576, −6.369675984865314, −6.235771774208231, −5.280545378314804, −4.882924929309636, −4.188111063402073, −3.802169697379908, −3.387031230888873, −2.707635690840475, −2.098531684604614, −1.440239183076518, −0.6913970068234650, 0, 0.6913970068234650, 1.440239183076518, 2.098531684604614, 2.707635690840475, 3.387031230888873, 3.802169697379908, 4.188111063402073, 4.882924929309636, 5.280545378314804, 6.235771774208231, 6.369675984865314, 6.733459139341576, 7.365026199542802, 7.887569702564939, 8.493375059020863, 8.825681574841088, 9.207434664642562, 9.828106613675302, 10.23273236803959, 10.76729779423252, 11.15053016786767, 11.73875428618710, 11.98938405591710, 12.68283807659909, 12.93692030144968

Graph of the $Z$-function along the critical line