Properties

Label 2-277248-1.1-c1-0-5
Degree $2$
Conductor $277248$
Sign $1$
Analytic cond. $2213.83$
Root an. cond. $47.0514$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·7-s + 9-s + 4·11-s + 4·13-s − 2·17-s + 4·21-s + 8·23-s − 5·25-s + 27-s − 8·29-s − 4·31-s + 4·33-s − 4·37-s + 4·39-s − 6·41-s + 4·43-s + 8·47-s + 9·49-s − 2·51-s − 8·53-s + 12·59-s − 12·61-s + 4·63-s − 12·67-s + 8·69-s + 8·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.51·7-s + 1/3·9-s + 1.20·11-s + 1.10·13-s − 0.485·17-s + 0.872·21-s + 1.66·23-s − 25-s + 0.192·27-s − 1.48·29-s − 0.718·31-s + 0.696·33-s − 0.657·37-s + 0.640·39-s − 0.937·41-s + 0.609·43-s + 1.16·47-s + 9/7·49-s − 0.280·51-s − 1.09·53-s + 1.56·59-s − 1.53·61-s + 0.503·63-s − 1.46·67-s + 0.963·69-s + 0.949·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 277248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 277248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(277248\)    =    \(2^{8} \cdot 3 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2213.83\)
Root analytic conductor: \(47.0514\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 277248,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.665647651\)
\(L(\frac12)\) \(\approx\) \(5.665647651\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 8 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86569416009618, −12.22259232227594, −11.75773340635083, −11.27425119080885, −11.03660395629445, −10.65577179442125, −9.956101694546623, −9.200543279368042, −9.083786760627470, −8.632054177578185, −8.238442599944072, −7.517246841148061, −7.304943317192642, −6.768903324494763, −6.049417435948066, −5.670473391370517, −5.050157362677421, −4.483962749377612, −4.076914378819987, −3.540980235488512, −3.108545442357180, −2.136666160721966, −1.713347407435079, −1.387953271945893, −0.6163724415038104, 0.6163724415038104, 1.387953271945893, 1.713347407435079, 2.136666160721966, 3.108545442357180, 3.540980235488512, 4.076914378819987, 4.483962749377612, 5.050157362677421, 5.670473391370517, 6.049417435948066, 6.768903324494763, 7.304943317192642, 7.517246841148061, 8.238442599944072, 8.632054177578185, 9.083786760627470, 9.200543279368042, 9.956101694546623, 10.65577179442125, 11.03660395629445, 11.27425119080885, 11.75773340635083, 12.22259232227594, 12.86569416009618

Graph of the $Z$-function along the critical line