Properties

Label 2-277440-1.1-c1-0-222
Degree $2$
Conductor $277440$
Sign $-1$
Analytic cond. $2215.36$
Root an. cond. $47.0677$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 4·7-s + 9-s + 2·13-s − 15-s − 4·21-s + 4·23-s + 25-s − 27-s − 2·29-s + 8·31-s + 4·35-s + 6·37-s − 2·39-s + 6·41-s − 12·43-s + 45-s − 12·47-s + 9·49-s + 10·53-s − 8·59-s − 10·61-s + 4·63-s + 2·65-s + 12·67-s − 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s + 0.554·13-s − 0.258·15-s − 0.872·21-s + 0.834·23-s + 1/5·25-s − 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.676·35-s + 0.986·37-s − 0.320·39-s + 0.937·41-s − 1.82·43-s + 0.149·45-s − 1.75·47-s + 9/7·49-s + 1.37·53-s − 1.04·59-s − 1.28·61-s + 0.503·63-s + 0.248·65-s + 1.46·67-s − 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 277440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 277440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(277440\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2215.36\)
Root analytic conductor: \(47.0677\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 277440,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
17 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94411892071974, −12.62969222151505, −11.77918675513165, −11.53235970357077, −11.34492098714232, −10.71666883738726, −10.33030496136308, −9.857797228493638, −9.313595636949764, −8.760685354822805, −8.209701685205047, −8.054001569312975, −7.297648068815739, −6.883493543651356, −6.335690332959273, −5.771950402515618, −5.448817394909686, −4.762595126325908, −4.541939298936153, −4.018456699121291, −3.096822247610699, −2.713050567061409, −1.836159859289111, −1.408664699981543, −0.9996516073455753, 0, 0.9996516073455753, 1.408664699981543, 1.836159859289111, 2.713050567061409, 3.096822247610699, 4.018456699121291, 4.541939298936153, 4.762595126325908, 5.448817394909686, 5.771950402515618, 6.335690332959273, 6.883493543651356, 7.297648068815739, 8.054001569312975, 8.209701685205047, 8.760685354822805, 9.313595636949764, 9.857797228493638, 10.33030496136308, 10.71666883738726, 11.34492098714232, 11.53235970357077, 11.77918675513165, 12.62969222151505, 12.94411892071974

Graph of the $Z$-function along the critical line