L(s) = 1 | − 2-s − 3·3-s + 4-s − 4·5-s + 3·6-s − 7-s − 8-s + 6·9-s + 4·10-s − 6·11-s − 3·12-s − 3·13-s + 14-s + 12·15-s + 16-s − 6·17-s − 6·18-s − 4·19-s − 4·20-s + 3·21-s + 6·22-s − 6·23-s + 3·24-s + 11·25-s + 3·26-s − 9·27-s − 28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.78·5-s + 1.22·6-s − 0.377·7-s − 0.353·8-s + 2·9-s + 1.26·10-s − 1.80·11-s − 0.866·12-s − 0.832·13-s + 0.267·14-s + 3.09·15-s + 1/4·16-s − 1.45·17-s − 1.41·18-s − 0.917·19-s − 0.894·20-s + 0.654·21-s + 1.27·22-s − 1.25·23-s + 0.612·24-s + 11/5·25-s + 0.588·26-s − 1.73·27-s − 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 28042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 7 | \( 1 + T \) |
| 2003 | \( 1 + T \) |
good | 3 | \( 1 + p T + p T^{2} \) |
| 5 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 + 6 T + p T^{2} \) |
| 13 | \( 1 + 3 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 10 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 4 T + p T^{2} \) |
| 41 | \( 1 + 4 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 + 3 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 15 T + p T^{2} \) |
| 61 | \( 1 + 12 T + p T^{2} \) |
| 67 | \( 1 + 8 T + p T^{2} \) |
| 71 | \( 1 - 10 T + p T^{2} \) |
| 73 | \( 1 - T + p T^{2} \) |
| 79 | \( 1 + 11 T + p T^{2} \) |
| 83 | \( 1 + 2 T + p T^{2} \) |
| 89 | \( 1 + 14 T + p T^{2} \) |
| 97 | \( 1 - 4 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.09015436361428, −15.61541206141731, −15.21733564513386, −15.02973727779648, −13.70577522228544, −12.89472872702216, −12.67759199005924, −12.18152178038496, −11.55155102696743, −11.11374663458392, −10.86073636806947, −10.27185014790960, −9.754437499476991, −8.897089375084428, −8.145962631992349, −7.692066514116583, −7.299585900145627, −6.642979938512620, −6.108449371183158, −5.363965835333898, −4.640543122763443, −4.369860815073653, −3.437039737945569, −2.544931157552177, −1.655058685167693, 0, 0, 0,
1.655058685167693, 2.544931157552177, 3.437039737945569, 4.369860815073653, 4.640543122763443, 5.363965835333898, 6.108449371183158, 6.642979938512620, 7.299585900145627, 7.692066514116583, 8.145962631992349, 8.897089375084428, 9.754437499476991, 10.27185014790960, 10.86073636806947, 11.11374663458392, 11.55155102696743, 12.18152178038496, 12.67759199005924, 12.89472872702216, 13.70577522228544, 15.02973727779648, 15.21733564513386, 15.61541206141731, 16.09015436361428