Properties

Label 2-28042-1.1-c1-0-4
Degree 22
Conductor 2804228042
Sign 1-1
Analytic cond. 223.916223.916
Root an. cond. 14.963814.9638
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 33

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s + 4-s − 4·5-s + 3·6-s − 7-s − 8-s + 6·9-s + 4·10-s − 6·11-s − 3·12-s − 3·13-s + 14-s + 12·15-s + 16-s − 6·17-s − 6·18-s − 4·19-s − 4·20-s + 3·21-s + 6·22-s − 6·23-s + 3·24-s + 11·25-s + 3·26-s − 9·27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.78·5-s + 1.22·6-s − 0.377·7-s − 0.353·8-s + 2·9-s + 1.26·10-s − 1.80·11-s − 0.866·12-s − 0.832·13-s + 0.267·14-s + 3.09·15-s + 1/4·16-s − 1.45·17-s − 1.41·18-s − 0.917·19-s − 0.894·20-s + 0.654·21-s + 1.27·22-s − 1.25·23-s + 0.612·24-s + 11/5·25-s + 0.588·26-s − 1.73·27-s − 0.188·28-s + ⋯

Functional equation

Λ(s)=(28042s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 28042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(28042s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 28042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 2804228042    =    2720032 \cdot 7 \cdot 2003
Sign: 1-1
Analytic conductor: 223.916223.916
Root analytic conductor: 14.963814.9638
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 33
Selberg data: (2, 28042, ( :1/2), 1)(2,\ 28042,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+T 1 + T
7 1+T 1 + T
2003 1+T 1 + T
good3 1+pT+pT2 1 + p T + p T^{2}
5 1+4T+pT2 1 + 4 T + p T^{2}
11 1+6T+pT2 1 + 6 T + p T^{2}
13 1+3T+pT2 1 + 3 T + p T^{2}
17 1+6T+pT2 1 + 6 T + p T^{2}
19 1+4T+pT2 1 + 4 T + p T^{2}
23 1+6T+pT2 1 + 6 T + p T^{2}
29 1+10T+pT2 1 + 10 T + p T^{2}
31 1+pT2 1 + p T^{2}
37 14T+pT2 1 - 4 T + p T^{2}
41 1+4T+pT2 1 + 4 T + p T^{2}
43 1+8T+pT2 1 + 8 T + p T^{2}
47 1+3T+pT2 1 + 3 T + p T^{2}
53 1+6T+pT2 1 + 6 T + p T^{2}
59 1+15T+pT2 1 + 15 T + p T^{2}
61 1+12T+pT2 1 + 12 T + p T^{2}
67 1+8T+pT2 1 + 8 T + p T^{2}
71 110T+pT2 1 - 10 T + p T^{2}
73 1T+pT2 1 - T + p T^{2}
79 1+11T+pT2 1 + 11 T + p T^{2}
83 1+2T+pT2 1 + 2 T + p T^{2}
89 1+14T+pT2 1 + 14 T + p T^{2}
97 14T+pT2 1 - 4 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−16.09015436361428, −15.61541206141731, −15.21733564513386, −15.02973727779648, −13.70577522228544, −12.89472872702216, −12.67759199005924, −12.18152178038496, −11.55155102696743, −11.11374663458392, −10.86073636806947, −10.27185014790960, −9.754437499476991, −8.897089375084428, −8.145962631992349, −7.692066514116583, −7.299585900145627, −6.642979938512620, −6.108449371183158, −5.363965835333898, −4.640543122763443, −4.369860815073653, −3.437039737945569, −2.544931157552177, −1.655058685167693, 0, 0, 0, 1.655058685167693, 2.544931157552177, 3.437039737945569, 4.369860815073653, 4.640543122763443, 5.363965835333898, 6.108449371183158, 6.642979938512620, 7.299585900145627, 7.692066514116583, 8.145962631992349, 8.897089375084428, 9.754437499476991, 10.27185014790960, 10.86073636806947, 11.11374663458392, 11.55155102696743, 12.18152178038496, 12.67759199005924, 12.89472872702216, 13.70577522228544, 15.02973727779648, 15.21733564513386, 15.61541206141731, 16.09015436361428

Graph of the ZZ-function along the critical line