Properties

Label 2-17e2-1.1-c1-0-9
Degree $2$
Conductor $289$
Sign $-1$
Analytic cond. $2.30767$
Root an. cond. $1.51910$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 2·5-s − 4·7-s + 3·8-s − 3·9-s − 2·10-s − 2·13-s + 4·14-s − 16-s + 3·18-s − 4·19-s − 2·20-s − 4·23-s − 25-s + 2·26-s + 4·28-s − 6·29-s − 4·31-s − 5·32-s − 8·35-s + 3·36-s + 2·37-s + 4·38-s + 6·40-s + 6·41-s + 4·43-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.894·5-s − 1.51·7-s + 1.06·8-s − 9-s − 0.632·10-s − 0.554·13-s + 1.06·14-s − 1/4·16-s + 0.707·18-s − 0.917·19-s − 0.447·20-s − 0.834·23-s − 1/5·25-s + 0.392·26-s + 0.755·28-s − 1.11·29-s − 0.718·31-s − 0.883·32-s − 1.35·35-s + 1/2·36-s + 0.328·37-s + 0.648·38-s + 0.948·40-s + 0.937·41-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(289\)    =    \(17^{2}\)
Sign: $-1$
Analytic conductor: \(2.30767\)
Root analytic conductor: \(1.51910\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 289,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 \)
good2 \( 1 + T + p T^{2} \)
3 \( 1 + p T^{2} \)
5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02941934245556844339132034347, −10.04009807089741531902747917178, −9.478907532433233918366672610314, −8.796016188301955158560715963145, −7.59089249699874684434940494125, −6.30307949005461764625435345620, −5.50273032332247760535071006049, −3.87810234950044466939896282289, −2.34450910132149137086379940903, 0, 2.34450910132149137086379940903, 3.87810234950044466939896282289, 5.50273032332247760535071006049, 6.30307949005461764625435345620, 7.59089249699874684434940494125, 8.796016188301955158560715963145, 9.478907532433233918366672610314, 10.04009807089741531902747917178, 11.02941934245556844339132034347

Graph of the $Z$-function along the critical line