L(s) = 1 | + 3-s + 5-s + 9-s + 2·11-s − 4·13-s + 15-s − 6·17-s − 6·19-s − 8·23-s + 25-s + 27-s − 2·29-s − 10·31-s + 2·33-s + 2·37-s − 4·39-s − 10·41-s − 4·43-s + 45-s + 8·47-s − 6·51-s + 4·53-s + 2·55-s − 6·57-s + 8·59-s − 6·61-s − 4·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 1/3·9-s + 0.603·11-s − 1.10·13-s + 0.258·15-s − 1.45·17-s − 1.37·19-s − 1.66·23-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 1.79·31-s + 0.348·33-s + 0.328·37-s − 0.640·39-s − 1.56·41-s − 0.609·43-s + 0.149·45-s + 1.16·47-s − 0.840·51-s + 0.549·53-s + 0.269·55-s − 0.794·57-s + 1.04·59-s − 0.768·61-s − 0.496·65-s + ⋯ |
Λ(s)=(=(2940s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2940s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1−T |
| 7 | 1 |
good | 11 | 1−2T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1+8T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+10T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1+10T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1−4T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1+6T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1−12T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1+8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.576753063635997780354724816607, −7.61991010314532395293141674162, −6.85500220249878455819000825708, −6.24416431678863774019927421815, −5.23406477936034179422601656737, −4.31129161226649985989005461361, −3.67509976173477623917923137546, −2.25371126242634563634491015097, −1.97163031330732203509706193529, 0,
1.97163031330732203509706193529, 2.25371126242634563634491015097, 3.67509976173477623917923137546, 4.31129161226649985989005461361, 5.23406477936034179422601656737, 6.24416431678863774019927421815, 6.85500220249878455819000825708, 7.61991010314532395293141674162, 8.576753063635997780354724816607