Properties

Label 2-29760-1.1-c1-0-28
Degree $2$
Conductor $29760$
Sign $1$
Analytic cond. $237.634$
Root an. cond. $15.4154$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s + 2·13-s − 15-s + 6·17-s + 4·19-s − 4·23-s + 25-s + 27-s − 2·29-s + 31-s + 2·37-s + 2·39-s − 6·41-s − 4·43-s − 45-s − 7·49-s + 6·51-s + 10·53-s + 4·57-s + 12·59-s − 10·61-s − 2·65-s + 4·67-s − 4·69-s + 14·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s + 0.554·13-s − 0.258·15-s + 1.45·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s + 0.192·27-s − 0.371·29-s + 0.179·31-s + 0.328·37-s + 0.320·39-s − 0.937·41-s − 0.609·43-s − 0.149·45-s − 49-s + 0.840·51-s + 1.37·53-s + 0.529·57-s + 1.56·59-s − 1.28·61-s − 0.248·65-s + 0.488·67-s − 0.481·69-s + 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29760\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 31\)
Sign: $1$
Analytic conductor: \(237.634\)
Root analytic conductor: \(15.4154\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 29760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.991773766\)
\(L(\frac12)\) \(\approx\) \(2.991773766\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
31 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.01253576399936, −14.68934302541223, −14.11131747659472, −13.54421732564357, −13.21394556435156, −12.39687059239036, −11.90050079747187, −11.64611003080993, −10.71500930236369, −10.34568710200721, −9.537165270596482, −9.395860425017619, −8.371638156938433, −8.088602778787462, −7.636376930622977, −6.908151603633745, −6.348722181533343, −5.481563492473888, −5.117656210614012, −4.153399583000393, −3.567068723467665, −3.211997287139536, −2.286790944996329, −1.454759544044686, −0.6787475454761288, 0.6787475454761288, 1.454759544044686, 2.286790944996329, 3.211997287139536, 3.567068723467665, 4.153399583000393, 5.117656210614012, 5.481563492473888, 6.348722181533343, 6.908151603633745, 7.636376930622977, 8.088602778787462, 8.371638156938433, 9.395860425017619, 9.537165270596482, 10.34568710200721, 10.71500930236369, 11.64611003080993, 11.90050079747187, 12.39687059239036, 13.21394556435156, 13.54421732564357, 14.11131747659472, 14.68934302541223, 15.01253576399936

Graph of the $Z$-function along the critical line