L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s + 4·11-s − 12-s + 5·13-s + 14-s + 16-s − 18-s + 2·19-s + 21-s − 4·22-s − 3·23-s + 24-s − 5·26-s − 27-s − 28-s + 8·29-s + 6·31-s − 32-s − 4·33-s + 36-s + 37-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 1.20·11-s − 0.288·12-s + 1.38·13-s + 0.267·14-s + 1/4·16-s − 0.235·18-s + 0.458·19-s + 0.218·21-s − 0.852·22-s − 0.625·23-s + 0.204·24-s − 0.980·26-s − 0.192·27-s − 0.188·28-s + 1.48·29-s + 1.07·31-s − 0.176·32-s − 0.696·33-s + 1/6·36-s + 0.164·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 303450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 303450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.199029164\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.199029164\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + T \) |
| 17 | \( 1 \) |
good | 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 - 5 T + p T^{2} \) |
| 19 | \( 1 - 2 T + p T^{2} \) |
| 23 | \( 1 + 3 T + p T^{2} \) |
| 29 | \( 1 - 8 T + p T^{2} \) |
| 31 | \( 1 - 6 T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 - 7 T + p T^{2} \) |
| 53 | \( 1 + 8 T + p T^{2} \) |
| 59 | \( 1 - 5 T + p T^{2} \) |
| 61 | \( 1 - 5 T + p T^{2} \) |
| 67 | \( 1 + 16 T + p T^{2} \) |
| 71 | \( 1 + 3 T + p T^{2} \) |
| 73 | \( 1 + 3 T + p T^{2} \) |
| 79 | \( 1 - 10 T + p T^{2} \) |
| 83 | \( 1 + 3 T + p T^{2} \) |
| 89 | \( 1 - 14 T + p T^{2} \) |
| 97 | \( 1 + 7 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.50487983397450, −12.03528230772609, −11.75350553436348, −11.31998030541539, −10.81481033940600, −10.32298375026147, −10.05478315553848, −9.370764214645245, −9.051369984613982, −8.634039074716019, −8.074891999306370, −7.599976216244607, −7.039190904476509, −6.459440907629924, −6.152908063276028, −5.967653352318863, −5.151006590442446, −4.454027452905297, −4.053665426600552, −3.499639524681135, −2.902411775371101, −2.268589858801701, −1.419056196189427, −1.052878118729228, −0.5562752828040814,
0.5562752828040814, 1.052878118729228, 1.419056196189427, 2.268589858801701, 2.902411775371101, 3.499639524681135, 4.053665426600552, 4.454027452905297, 5.151006590442446, 5.967653352318863, 6.152908063276028, 6.459440907629924, 7.039190904476509, 7.599976216244607, 8.074891999306370, 8.634039074716019, 9.051369984613982, 9.370764214645245, 10.05478315553848, 10.32298375026147, 10.81481033940600, 11.31998030541539, 11.75350553436348, 12.03528230772609, 12.50487983397450