L(s) = 1 | − 3-s + 5-s − 2·7-s + 9-s + 13-s − 15-s − 2·19-s + 2·21-s + 6·23-s + 25-s − 27-s − 8·31-s − 2·35-s + 2·37-s − 39-s + 6·41-s + 4·43-s + 45-s − 3·49-s − 6·53-s + 2·57-s + 14·61-s − 2·63-s + 65-s + 4·67-s − 6·69-s − 4·73-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.277·13-s − 0.258·15-s − 0.458·19-s + 0.436·21-s + 1.25·23-s + 1/5·25-s − 0.192·27-s − 1.43·31-s − 0.338·35-s + 0.328·37-s − 0.160·39-s + 0.937·41-s + 0.609·43-s + 0.149·45-s − 3/7·49-s − 0.824·53-s + 0.264·57-s + 1.79·61-s − 0.251·63-s + 0.124·65-s + 0.488·67-s − 0.722·69-s − 0.468·73-s + ⋯ |
Λ(s)=(=(3120s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3120s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.391958533 |
L(21) |
≈ |
1.391958533 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1−T |
| 13 | 1−T |
good | 7 | 1+2T+pT2 |
| 11 | 1+pT2 |
| 17 | 1+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+4T+pT2 |
| 79 | 1−16T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+4T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.907998718246193749300650634254, −7.85832220713197698190585116152, −6.99686575372866242821342185369, −6.42262701034001882837697519636, −5.70233605244569122682417518238, −4.98674800015260782294546923298, −3.98803889555059043901076634706, −3.09638465664731709775430870739, −2.00888213860569869943119252787, −0.73199284761332162352741133507,
0.73199284761332162352741133507, 2.00888213860569869943119252787, 3.09638465664731709775430870739, 3.98803889555059043901076634706, 4.98674800015260782294546923298, 5.70233605244569122682417518238, 6.42262701034001882837697519636, 6.99686575372866242821342185369, 7.85832220713197698190585116152, 8.907998718246193749300650634254