Properties

Label 2-320892-1.1-c1-0-32
Degree $2$
Conductor $320892$
Sign $-1$
Analytic cond. $2562.33$
Root an. cond. $50.6195$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s + 7-s + 9-s + 13-s + 4·15-s − 17-s + 2·19-s + 21-s + 4·23-s + 11·25-s + 27-s − 29-s − 11·31-s + 4·35-s + 3·37-s + 39-s − 6·41-s − 3·43-s + 4·45-s − 9·47-s − 6·49-s − 51-s − 2·53-s + 2·57-s − 9·59-s + 12·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s + 0.377·7-s + 1/3·9-s + 0.277·13-s + 1.03·15-s − 0.242·17-s + 0.458·19-s + 0.218·21-s + 0.834·23-s + 11/5·25-s + 0.192·27-s − 0.185·29-s − 1.97·31-s + 0.676·35-s + 0.493·37-s + 0.160·39-s − 0.937·41-s − 0.457·43-s + 0.596·45-s − 1.31·47-s − 6/7·49-s − 0.140·51-s − 0.274·53-s + 0.264·57-s − 1.17·59-s + 1.53·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320892 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320892 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320892\)    =    \(2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17\)
Sign: $-1$
Analytic conductor: \(2562.33\)
Root analytic conductor: \(50.6195\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 320892,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 + 11 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 3 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 - 12 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + 5 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96708828043227, −12.76355934175619, −11.92703255917349, −11.33605048575227, −11.05167253307279, −10.43271226490260, −10.06263278287038, −9.609436871475098, −9.219014638524730, −8.782540384012605, −8.496592168175742, −7.660943956630998, −7.377432855726463, −6.699616684888043, −6.327559934422580, −5.849069214829047, −5.150653742455150, −5.050961913417431, −4.389397581192622, −3.411927156011473, −3.309541176811546, −2.491806010802484, −2.005916396555064, −1.549134770719489, −1.130767234639261, 0, 1.130767234639261, 1.549134770719489, 2.005916396555064, 2.491806010802484, 3.309541176811546, 3.411927156011473, 4.389397581192622, 5.050961913417431, 5.150653742455150, 5.849069214829047, 6.327559934422580, 6.699616684888043, 7.377432855726463, 7.660943956630998, 8.496592168175742, 8.782540384012605, 9.219014638524730, 9.609436871475098, 10.06263278287038, 10.43271226490260, 11.05167253307279, 11.33605048575227, 11.92703255917349, 12.76355934175619, 12.96708828043227

Graph of the $Z$-function along the critical line