Properties

Label 2-320892-1.1-c1-0-19
Degree $2$
Conductor $320892$
Sign $-1$
Analytic cond. $2562.33$
Root an. cond. $50.6195$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 9-s − 13-s − 2·15-s − 17-s + 4·23-s − 25-s − 27-s − 6·29-s + 4·31-s − 8·37-s + 39-s + 10·43-s + 2·45-s + 8·47-s − 7·49-s + 51-s + 6·53-s − 12·59-s + 12·61-s − 2·65-s + 6·67-s − 4·69-s + 14·73-s + 75-s + 8·79-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1/3·9-s − 0.277·13-s − 0.516·15-s − 0.242·17-s + 0.834·23-s − 1/5·25-s − 0.192·27-s − 1.11·29-s + 0.718·31-s − 1.31·37-s + 0.160·39-s + 1.52·43-s + 0.298·45-s + 1.16·47-s − 49-s + 0.140·51-s + 0.824·53-s − 1.56·59-s + 1.53·61-s − 0.248·65-s + 0.733·67-s − 0.481·69-s + 1.63·73-s + 0.115·75-s + 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320892 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320892 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320892\)    =    \(2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17\)
Sign: $-1$
Analytic conductor: \(2562.33\)
Root analytic conductor: \(50.6195\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 320892,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 12 T + p T^{2} \)
67 \( 1 - 6 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79430587975967, −12.35108253800161, −12.07775666310462, −11.42243421372574, −10.86645104514251, −10.75326031281568, −10.13280541636895, −9.638161264935266, −9.201544990235653, −9.016755132716933, −8.092300988023596, −7.850942389184672, −7.135708996198313, −6.679194191138780, −6.422077166461182, −5.602502932033179, −5.453706176871779, −5.004010048094508, −4.279329113114363, −3.846927790055289, −3.196108059393634, −2.407988266741773, −2.141734378723537, −1.382425427325754, −0.8070682625520731, 0, 0.8070682625520731, 1.382425427325754, 2.141734378723537, 2.407988266741773, 3.196108059393634, 3.846927790055289, 4.279329113114363, 5.004010048094508, 5.453706176871779, 5.602502932033179, 6.422077166461182, 6.679194191138780, 7.135708996198313, 7.850942389184672, 8.092300988023596, 9.016755132716933, 9.201544990235653, 9.638161264935266, 10.13280541636895, 10.75326031281568, 10.86645104514251, 11.42243421372574, 12.07775666310462, 12.35108253800161, 12.79430587975967

Graph of the $Z$-function along the critical line