Properties

Label 2-57e2-1.1-c1-0-57
Degree $2$
Conductor $3249$
Sign $1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 5-s + 3·7-s + 5·11-s + 4·16-s + 7·17-s − 2·20-s + 4·23-s − 4·25-s − 6·28-s + 3·35-s − 43-s − 10·44-s − 13·47-s + 2·49-s + 5·55-s + 15·61-s − 8·64-s − 14·68-s − 11·73-s + 15·77-s + 4·80-s + 16·83-s + 7·85-s − 8·92-s + 8·100-s − 10·101-s + ⋯
L(s)  = 1  − 4-s + 0.447·5-s + 1.13·7-s + 1.50·11-s + 16-s + 1.69·17-s − 0.447·20-s + 0.834·23-s − 4/5·25-s − 1.13·28-s + 0.507·35-s − 0.152·43-s − 1.50·44-s − 1.89·47-s + 2/7·49-s + 0.674·55-s + 1.92·61-s − 64-s − 1.69·68-s − 1.28·73-s + 1.70·77-s + 0.447·80-s + 1.75·83-s + 0.759·85-s − 0.834·92-s + 4/5·100-s − 0.995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.220207638\)
\(L(\frac12)\) \(\approx\) \(2.220207638\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 + p T^{2} \)
5 \( 1 - T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 + 13 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 15 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.580042248187093986713935126037, −8.107116855348831176369596581034, −7.27943314894574780769453240025, −6.27245985312872964632310218742, −5.45289188915211295785069372208, −4.88187668285910676494600805335, −4.00355565153622805697617293535, −3.28074247116569086926038001604, −1.71787306481732958102463482448, −1.01885130548047428295164993318, 1.01885130548047428295164993318, 1.71787306481732958102463482448, 3.28074247116569086926038001604, 4.00355565153622805697617293535, 4.88187668285910676494600805335, 5.45289188915211295785069372208, 6.27245985312872964632310218742, 7.27943314894574780769453240025, 8.107116855348831176369596581034, 8.580042248187093986713935126037

Graph of the $Z$-function along the critical line