L(s) = 1 | − 4·7-s + 5·13-s + 19-s + 11·31-s + 37-s + 8·43-s + 9·49-s + 13·61-s + 16·67-s − 10·73-s + 4·79-s − 20·91-s − 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
L(s) = 1 | − 1.51·7-s + 1.38·13-s + 0.229·19-s + 1.97·31-s + 0.164·37-s + 1.21·43-s + 9/7·49-s + 1.66·61-s + 1.95·67-s − 1.17·73-s + 0.450·79-s − 2.09·91-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 326700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 326700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 7 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 - 5 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 - T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 - 11 T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 - 8 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 13 T + p T^{2} \) |
| 67 | \( 1 - 16 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.86250162851920, −12.47586797319510, −11.98333139634806, −11.39257427347417, −11.11810382485074, −10.43279299137437, −10.10870869260594, −9.662399453633723, −9.244544754458528, −8.728360265439167, −8.266236263648501, −7.877076851123835, −7.114958539823117, −6.658043207089988, −6.429191573785297, −5.798770618997876, −5.548811141825750, −4.715004435006800, −4.140847300579289, −3.701347468387505, −3.244640774753684, −2.672966075532914, −2.227173113762841, −1.149322284211527, −0.8807505699413323, 0,
0.8807505699413323, 1.149322284211527, 2.227173113762841, 2.672966075532914, 3.244640774753684, 3.701347468387505, 4.140847300579289, 4.715004435006800, 5.548811141825750, 5.798770618997876, 6.429191573785297, 6.658043207089988, 7.114958539823117, 7.877076851123835, 8.266236263648501, 8.728360265439167, 9.244544754458528, 9.662399453633723, 10.10870869260594, 10.43279299137437, 11.11810382485074, 11.39257427347417, 11.98333139634806, 12.47586797319510, 12.86250162851920