L(s) = 1 | − 3-s + 5-s + 7-s + 9-s + 2·13-s − 15-s − 2·17-s − 4·19-s − 21-s − 8·23-s + 25-s − 27-s − 2·29-s − 4·31-s + 35-s − 6·37-s − 2·39-s − 6·41-s + 4·43-s + 45-s + 49-s + 2·51-s + 6·53-s + 4·57-s + 6·61-s + 63-s + 2·65-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s + 0.554·13-s − 0.258·15-s − 0.485·17-s − 0.917·19-s − 0.218·21-s − 1.66·23-s + 1/5·25-s − 0.192·27-s − 0.371·29-s − 0.718·31-s + 0.169·35-s − 0.986·37-s − 0.320·39-s − 0.937·41-s + 0.609·43-s + 0.149·45-s + 1/7·49-s + 0.280·51-s + 0.824·53-s + 0.529·57-s + 0.768·61-s + 0.125·63-s + 0.248·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 - T \) |
good | 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 6 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 + 12 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.369767981458886442801806838600, −7.41629292481996293360453395407, −6.64146548334011013549156702363, −5.94526474664939306175008622873, −5.34668367598768644778997937200, −4.37251384652991111283647944355, −3.70157366681015366521243166497, −2.30214802294800121564808697184, −1.53729187355498202839723415822, 0,
1.53729187355498202839723415822, 2.30214802294800121564808697184, 3.70157366681015366521243166497, 4.37251384652991111283647944355, 5.34668367598768644778997937200, 5.94526474664939306175008622873, 6.64146548334011013549156702363, 7.41629292481996293360453395407, 8.369767981458886442801806838600