Properties

Label 2-352-1.1-c1-0-5
Degree $2$
Conductor $352$
Sign $1$
Analytic cond. $2.81073$
Root an. cond. $1.67652$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5-s + 6·9-s − 11-s − 6·13-s + 3·15-s − 4·17-s + 6·19-s + 3·23-s − 4·25-s + 9·27-s − 4·29-s − 9·31-s − 3·33-s + 7·37-s − 18·39-s − 2·41-s + 6·43-s + 6·45-s + 12·47-s − 7·49-s − 12·51-s + 2·53-s − 55-s + 18·57-s + 9·59-s + 8·61-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.447·5-s + 2·9-s − 0.301·11-s − 1.66·13-s + 0.774·15-s − 0.970·17-s + 1.37·19-s + 0.625·23-s − 4/5·25-s + 1.73·27-s − 0.742·29-s − 1.61·31-s − 0.522·33-s + 1.15·37-s − 2.88·39-s − 0.312·41-s + 0.914·43-s + 0.894·45-s + 1.75·47-s − 49-s − 1.68·51-s + 0.274·53-s − 0.134·55-s + 2.38·57-s + 1.17·59-s + 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(352\)    =    \(2^{5} \cdot 11\)
Sign: $1$
Analytic conductor: \(2.81073\)
Root analytic conductor: \(1.67652\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 352,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.289347848\)
\(L(\frac12)\) \(\approx\) \(2.289347848\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
7 \( 1 + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + 9 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 9 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 15 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 5 T + p T^{2} \)
97 \( 1 + 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.48765966144200263153367178743, −10.14889382700236447566174943288, −9.451459787186287547513931970345, −8.898169270138754335636599528060, −7.57043482421816953066681680217, −7.26196412622229333930577861479, −5.47596345374224228505212048376, −4.20924970695423611570948148225, −2.91009289331815173285446803923, −2.05183530740595856747996297853, 2.05183530740595856747996297853, 2.91009289331815173285446803923, 4.20924970695423611570948148225, 5.47596345374224228505212048376, 7.26196412622229333930577861479, 7.57043482421816953066681680217, 8.898169270138754335636599528060, 9.451459787186287547513931970345, 10.14889382700236447566174943288, 11.48765966144200263153367178743

Graph of the $Z$-function along the critical line