L(s) = 1 | + 3·3-s + 5-s + 6·9-s − 11-s − 6·13-s + 3·15-s − 4·17-s + 6·19-s + 3·23-s − 4·25-s + 9·27-s − 4·29-s − 9·31-s − 3·33-s + 7·37-s − 18·39-s − 2·41-s + 6·43-s + 6·45-s + 12·47-s − 7·49-s − 12·51-s + 2·53-s − 55-s + 18·57-s + 9·59-s + 8·61-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 0.447·5-s + 2·9-s − 0.301·11-s − 1.66·13-s + 0.774·15-s − 0.970·17-s + 1.37·19-s + 0.625·23-s − 4/5·25-s + 1.73·27-s − 0.742·29-s − 1.61·31-s − 0.522·33-s + 1.15·37-s − 2.88·39-s − 0.312·41-s + 0.914·43-s + 0.894·45-s + 1.75·47-s − 49-s − 1.68·51-s + 0.274·53-s − 0.134·55-s + 2.38·57-s + 1.17·59-s + 1.02·61-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.289347848 |
L(21) |
≈ |
2.289347848 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+T |
good | 3 | 1−pT+pT2 |
| 5 | 1−T+pT2 |
| 7 | 1+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1+9T+pT2 |
| 37 | 1−7T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−9T+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1+15T+pT2 |
| 71 | 1+3T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1+6T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1+5T+pT2 |
| 97 | 1+3T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.48765966144200263153367178743, −10.14889382700236447566174943288, −9.451459787186287547513931970345, −8.898169270138754335636599528060, −7.57043482421816953066681680217, −7.26196412622229333930577861479, −5.47596345374224228505212048376, −4.20924970695423611570948148225, −2.91009289331815173285446803923, −2.05183530740595856747996297853,
2.05183530740595856747996297853, 2.91009289331815173285446803923, 4.20924970695423611570948148225, 5.47596345374224228505212048376, 7.26196412622229333930577861479, 7.57043482421816953066681680217, 8.898169270138754335636599528060, 9.451459787186287547513931970345, 10.14889382700236447566174943288, 11.48765966144200263153367178743