Properties

Label 2-352-1.1-c1-0-5
Degree 22
Conductor 352352
Sign 11
Analytic cond. 2.810732.81073
Root an. cond. 1.676521.67652
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5-s + 6·9-s − 11-s − 6·13-s + 3·15-s − 4·17-s + 6·19-s + 3·23-s − 4·25-s + 9·27-s − 4·29-s − 9·31-s − 3·33-s + 7·37-s − 18·39-s − 2·41-s + 6·43-s + 6·45-s + 12·47-s − 7·49-s − 12·51-s + 2·53-s − 55-s + 18·57-s + 9·59-s + 8·61-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.447·5-s + 2·9-s − 0.301·11-s − 1.66·13-s + 0.774·15-s − 0.970·17-s + 1.37·19-s + 0.625·23-s − 4/5·25-s + 1.73·27-s − 0.742·29-s − 1.61·31-s − 0.522·33-s + 1.15·37-s − 2.88·39-s − 0.312·41-s + 0.914·43-s + 0.894·45-s + 1.75·47-s − 49-s − 1.68·51-s + 0.274·53-s − 0.134·55-s + 2.38·57-s + 1.17·59-s + 1.02·61-s + ⋯

Functional equation

Λ(s)=(352s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(352s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 352352    =    25112^{5} \cdot 11
Sign: 11
Analytic conductor: 2.810732.81073
Root analytic conductor: 1.676521.67652
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 352, ( :1/2), 1)(2,\ 352,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 2.2893478482.289347848
L(12)L(\frac12) \approx 2.2893478482.289347848
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
11 1+T 1 + T
good3 1pT+pT2 1 - p T + p T^{2}
5 1T+pT2 1 - T + p T^{2}
7 1+pT2 1 + p T^{2}
13 1+6T+pT2 1 + 6 T + p T^{2}
17 1+4T+pT2 1 + 4 T + p T^{2}
19 16T+pT2 1 - 6 T + p T^{2}
23 13T+pT2 1 - 3 T + p T^{2}
29 1+4T+pT2 1 + 4 T + p T^{2}
31 1+9T+pT2 1 + 9 T + p T^{2}
37 17T+pT2 1 - 7 T + p T^{2}
41 1+2T+pT2 1 + 2 T + p T^{2}
43 16T+pT2 1 - 6 T + p T^{2}
47 112T+pT2 1 - 12 T + p T^{2}
53 12T+pT2 1 - 2 T + p T^{2}
59 19T+pT2 1 - 9 T + p T^{2}
61 18T+pT2 1 - 8 T + p T^{2}
67 1+15T+pT2 1 + 15 T + p T^{2}
71 1+3T+pT2 1 + 3 T + p T^{2}
73 1+6T+pT2 1 + 6 T + p T^{2}
79 1+6T+pT2 1 + 6 T + p T^{2}
83 1+6T+pT2 1 + 6 T + p T^{2}
89 1+5T+pT2 1 + 5 T + p T^{2}
97 1+3T+pT2 1 + 3 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.48765966144200263153367178743, −10.14889382700236447566174943288, −9.451459787186287547513931970345, −8.898169270138754335636599528060, −7.57043482421816953066681680217, −7.26196412622229333930577861479, −5.47596345374224228505212048376, −4.20924970695423611570948148225, −2.91009289331815173285446803923, −2.05183530740595856747996297853, 2.05183530740595856747996297853, 2.91009289331815173285446803923, 4.20924970695423611570948148225, 5.47596345374224228505212048376, 7.26196412622229333930577861479, 7.57043482421816953066681680217, 8.898169270138754335636599528060, 9.451459787186287547513931970345, 10.14889382700236447566174943288, 11.48765966144200263153367178743

Graph of the ZZ-function along the critical line