L(s) = 1 | − 3-s − 2·5-s + 9-s − 4·11-s − 2·13-s + 2·15-s − 6·17-s − 19-s + 4·23-s − 25-s − 27-s + 2·29-s − 4·31-s + 4·33-s − 10·37-s + 2·39-s + 10·41-s + 4·43-s − 2·45-s + 4·47-s − 7·49-s + 6·51-s + 10·53-s + 8·55-s + 57-s + 12·59-s − 14·61-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.894·5-s + 1/3·9-s − 1.20·11-s − 0.554·13-s + 0.516·15-s − 1.45·17-s − 0.229·19-s + 0.834·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s − 0.718·31-s + 0.696·33-s − 1.64·37-s + 0.320·39-s + 1.56·41-s + 0.609·43-s − 0.298·45-s + 0.583·47-s − 49-s + 0.840·51-s + 1.37·53-s + 1.07·55-s + 0.132·57-s + 1.56·59-s − 1.79·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5629683516\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5629683516\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 19 | \( 1 + T \) |
good | 5 | \( 1 + 2 T + p T^{2} \) |
| 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 - 10 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 - 4 T + p T^{2} \) |
| 53 | \( 1 - 10 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 + 14 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.579367506156330503389048354643, −7.48873396473688686461134773673, −7.33130449624382884248760041688, −6.32145732058838049246830733390, −5.44510457972462171710066802029, −4.71985256202587042668589974176, −4.09297124441246348163372998229, −2.98735220618887699604687546117, −2.05177601615093031470617601783, −0.42785930560795838266703762436,
0.42785930560795838266703762436, 2.05177601615093031470617601783, 2.98735220618887699604687546117, 4.09297124441246348163372998229, 4.71985256202587042668589974176, 5.44510457972462171710066802029, 6.32145732058838049246830733390, 7.33130449624382884248760041688, 7.48873396473688686461134773673, 8.579367506156330503389048354643