Properties

Label 2-37440-1.1-c1-0-139
Degree $2$
Conductor $37440$
Sign $-1$
Analytic cond. $298.959$
Root an. cond. $17.2904$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s − 13-s − 2·17-s + 25-s − 2·29-s − 4·31-s + 4·35-s − 6·37-s + 6·41-s − 4·43-s + 4·47-s + 9·49-s − 10·53-s + 2·61-s − 65-s − 8·67-s − 4·71-s − 6·73-s − 8·79-s + 8·83-s − 2·85-s + 6·89-s − 4·91-s − 14·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s − 0.277·13-s − 0.485·17-s + 1/5·25-s − 0.371·29-s − 0.718·31-s + 0.676·35-s − 0.986·37-s + 0.937·41-s − 0.609·43-s + 0.583·47-s + 9/7·49-s − 1.37·53-s + 0.256·61-s − 0.124·65-s − 0.977·67-s − 0.474·71-s − 0.702·73-s − 0.900·79-s + 0.878·83-s − 0.216·85-s + 0.635·89-s − 0.419·91-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37440\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(298.959\)
Root analytic conductor: \(17.2904\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 37440,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.00347801122181, −14.52931744525226, −14.19930178171217, −13.65163192065839, −13.05560004596430, −12.55214775232516, −11.87269546266901, −11.45046864745656, −10.90907751115954, −10.48683647252571, −9.885108335041901, −9.036269401401378, −8.894642215507267, −8.086517808990904, −7.620030829719291, −7.112201912023611, −6.371016767874346, −5.709346131819944, −5.162172710647932, −4.659659598412185, −4.078799631445245, −3.233256220607669, −2.379136501673358, −1.804766080560995, −1.219875691158323, 0, 1.219875691158323, 1.804766080560995, 2.379136501673358, 3.233256220607669, 4.078799631445245, 4.659659598412185, 5.162172710647932, 5.709346131819944, 6.371016767874346, 7.112201912023611, 7.620030829719291, 8.086517808990904, 8.894642215507267, 9.036269401401378, 9.885108335041901, 10.48683647252571, 10.90907751115954, 11.45046864745656, 11.87269546266901, 12.55214775232516, 13.05560004596430, 13.65163192065839, 14.19930178171217, 14.52931744525226, 15.00347801122181

Graph of the $Z$-function along the critical line