Properties

Label 2-38115-1.1-c1-0-29
Degree $2$
Conductor $38115$
Sign $-1$
Analytic cond. $304.349$
Root an. cond. $17.4456$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 5-s + 7-s − 2·10-s + 2·13-s − 2·14-s − 4·16-s + 17-s + 7·19-s + 2·20-s − 5·23-s + 25-s − 4·26-s + 2·28-s + 3·29-s − 4·31-s + 8·32-s − 2·34-s + 35-s − 2·37-s − 14·38-s − 12·41-s + 43-s + 10·46-s + 4·47-s + 49-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.447·5-s + 0.377·7-s − 0.632·10-s + 0.554·13-s − 0.534·14-s − 16-s + 0.242·17-s + 1.60·19-s + 0.447·20-s − 1.04·23-s + 1/5·25-s − 0.784·26-s + 0.377·28-s + 0.557·29-s − 0.718·31-s + 1.41·32-s − 0.342·34-s + 0.169·35-s − 0.328·37-s − 2.27·38-s − 1.87·41-s + 0.152·43-s + 1.47·46-s + 0.583·47-s + 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38115 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38115\)    =    \(3^{2} \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(304.349\)
Root analytic conductor: \(17.4456\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 38115,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
good2 \( 1 + p T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - T + p T^{2} \)
19 \( 1 - 7 T + p T^{2} \)
23 \( 1 + 5 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 - 11 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 + 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.44892668792593, −14.46028366068095, −14.08972208255630, −13.58902032061106, −13.17583758352650, −12.18091962789594, −11.91040411970756, −11.22968400725957, −10.76293835000682, −10.18072720356840, −9.763844094944723, −9.341491034217390, −8.662773203816934, −8.247192123572037, −7.775140394880535, −7.072018638742970, −6.725811857723793, −5.787339471657950, −5.381778047866521, −4.627512822590192, −3.826028249386005, −3.097959296201521, −2.233613967360924, −1.535583688650142, −1.046658679007154, 0, 1.046658679007154, 1.535583688650142, 2.233613967360924, 3.097959296201521, 3.826028249386005, 4.627512822590192, 5.381778047866521, 5.787339471657950, 6.725811857723793, 7.072018638742970, 7.775140394880535, 8.247192123572037, 8.662773203816934, 9.341491034217390, 9.763844094944723, 10.18072720356840, 10.76293835000682, 11.22968400725957, 11.91040411970756, 12.18091962789594, 13.17583758352650, 13.58902032061106, 14.08972208255630, 14.46028366068095, 15.44892668792593

Graph of the $Z$-function along the critical line