Properties

Label 2-382200-1.1-c1-0-211
Degree $2$
Conductor $382200$
Sign $-1$
Analytic cond. $3051.88$
Root an. cond. $55.2438$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 13-s + 2·17-s + 27-s − 2·29-s + 4·31-s − 6·37-s + 39-s + 6·41-s − 4·43-s − 4·47-s + 2·51-s + 10·53-s + 2·61-s − 8·67-s + 4·71-s − 6·73-s − 8·79-s + 81-s + 8·83-s − 2·87-s + 6·89-s + 4·93-s − 14·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.277·13-s + 0.485·17-s + 0.192·27-s − 0.371·29-s + 0.718·31-s − 0.986·37-s + 0.160·39-s + 0.937·41-s − 0.609·43-s − 0.583·47-s + 0.280·51-s + 1.37·53-s + 0.256·61-s − 0.977·67-s + 0.474·71-s − 0.702·73-s − 0.900·79-s + 1/9·81-s + 0.878·83-s − 0.214·87-s + 0.635·89-s + 0.414·93-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 382200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 382200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(382200\)    =    \(2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(3051.88\)
Root analytic conductor: \(55.2438\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 382200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.83159626832014, −12.15866106526172, −11.89576055532876, −11.38848512882588, −10.82415058699710, −10.37645498605839, −10.00442244445430, −9.515989389029518, −9.046235804224544, −8.550904877456569, −8.264688716518423, −7.636532536758653, −7.303142643352998, −6.766092444409814, −6.254397062067281, −5.738031052559302, −5.227857492192932, −4.703844037401849, −4.115602098550054, −3.672506913492143, −3.147648187368886, −2.640461154704095, −2.042984514706722, −1.437396376884809, −0.8674627548717346, 0, 0.8674627548717346, 1.437396376884809, 2.042984514706722, 2.640461154704095, 3.147648187368886, 3.672506913492143, 4.115602098550054, 4.703844037401849, 5.227857492192932, 5.738031052559302, 6.254397062067281, 6.766092444409814, 7.303142643352998, 7.636532536758653, 8.264688716518423, 8.550904877456569, 9.046235804224544, 9.515989389029518, 10.00442244445430, 10.37645498605839, 10.82415058699710, 11.38848512882588, 11.89576055532876, 12.15866106526172, 12.83159626832014

Graph of the $Z$-function along the critical line