Properties

Label 2-624e2-1.1-c1-0-3
Degree $2$
Conductor $389376$
Sign $1$
Analytic cond. $3109.18$
Root an. cond. $55.7600$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s + 2·17-s + 4·19-s + 4·23-s − 25-s − 6·29-s − 2·31-s − 4·35-s − 8·37-s − 2·41-s − 4·43-s − 12·47-s − 3·49-s − 6·53-s + 4·59-s − 12·67-s − 12·71-s − 6·73-s + 10·79-s − 16·83-s + 4·85-s + 10·89-s + 8·95-s + 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s + 0.485·17-s + 0.917·19-s + 0.834·23-s − 1/5·25-s − 1.11·29-s − 0.359·31-s − 0.676·35-s − 1.31·37-s − 0.312·41-s − 0.609·43-s − 1.75·47-s − 3/7·49-s − 0.824·53-s + 0.520·59-s − 1.46·67-s − 1.42·71-s − 0.702·73-s + 1.12·79-s − 1.75·83-s + 0.433·85-s + 1.05·89-s + 0.820·95-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 389376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 389376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(389376\)    =    \(2^{8} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(3109.18\)
Root analytic conductor: \(55.7600\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 389376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9311309412\)
\(L(\frac12)\) \(\approx\) \(0.9311309412\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.68337110841191, −11.86456087480079, −11.63835267620273, −11.17474155781388, −10.46758077125605, −10.11037019618110, −9.828515248893994, −9.324796662211432, −8.938898266944451, −8.537566076512273, −7.695427158851874, −7.478242528125365, −6.910400980697395, −6.373344992846798, −6.018303529933580, −5.501987194561516, −5.034446391551110, −4.675809902926487, −3.653867904362108, −3.441622897582064, −2.967225906139017, −2.290711447957333, −1.538658338583139, −1.372539343233146, −0.2337746778275941, 0.2337746778275941, 1.372539343233146, 1.538658338583139, 2.290711447957333, 2.967225906139017, 3.441622897582064, 3.653867904362108, 4.675809902926487, 5.034446391551110, 5.501987194561516, 6.018303529933580, 6.373344992846798, 6.910400980697395, 7.478242528125365, 7.695427158851874, 8.537566076512273, 8.938898266944451, 9.324796662211432, 9.828515248893994, 10.11037019618110, 10.46758077125605, 11.17474155781388, 11.63835267620273, 11.86456087480079, 12.68337110841191

Graph of the $Z$-function along the critical line