Properties

Label 2-397488-1.1-c1-0-14
Degree $2$
Conductor $397488$
Sign $1$
Analytic cond. $3173.95$
Root an. cond. $56.3378$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s + 2·11-s + 2·15-s − 6·17-s − 8·19-s + 6·23-s − 25-s + 27-s − 10·29-s − 4·31-s + 2·33-s − 6·37-s − 6·41-s − 4·43-s + 2·45-s − 8·47-s − 6·51-s + 2·53-s + 4·55-s − 8·57-s + 4·59-s + 8·61-s − 8·67-s + 6·69-s − 10·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s + 0.603·11-s + 0.516·15-s − 1.45·17-s − 1.83·19-s + 1.25·23-s − 1/5·25-s + 0.192·27-s − 1.85·29-s − 0.718·31-s + 0.348·33-s − 0.986·37-s − 0.937·41-s − 0.609·43-s + 0.298·45-s − 1.16·47-s − 0.840·51-s + 0.274·53-s + 0.539·55-s − 1.05·57-s + 0.520·59-s + 1.02·61-s − 0.977·67-s + 0.722·69-s − 1.18·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 397488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 397488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(397488\)    =    \(2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(3173.95\)
Root analytic conductor: \(56.3378\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 397488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.031650813\)
\(L(\frac12)\) \(\approx\) \(1.031650813\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.76703744736846, −11.94950102357922, −11.43260912365849, −11.08602544352900, −10.62049672760470, −10.13292018130203, −9.705369391010510, −9.125872364770501, −8.856370561546684, −8.590675954927272, −8.003364082212139, −7.241967959065734, −6.872673222899412, −6.592002975682428, −6.020812405044393, −5.443779980531621, −5.029159081584965, −4.281175935442844, −4.043362565917578, −3.385172792336319, −2.817136328341067, −2.087519087178546, −1.852962389754267, −1.425080039732096, −0.2208575414547275, 0.2208575414547275, 1.425080039732096, 1.852962389754267, 2.087519087178546, 2.817136328341067, 3.385172792336319, 4.043362565917578, 4.281175935442844, 5.029159081584965, 5.443779980531621, 6.020812405044393, 6.592002975682428, 6.872673222899412, 7.241967959065734, 8.003364082212139, 8.590675954927272, 8.856370561546684, 9.125872364770501, 9.705369391010510, 10.13292018130203, 10.62049672760470, 11.08602544352900, 11.43260912365849, 11.94950102357922, 12.76703744736846

Graph of the $Z$-function along the critical line