L(s) = 1 | − 5-s − 2·7-s + 4·11-s + 13-s − 4·19-s + 23-s + 25-s + 7·29-s − 7·31-s + 2·35-s − 4·37-s − 3·41-s + 6·43-s + 13·47-s − 3·49-s − 10·53-s − 4·55-s + 8·59-s − 65-s + 8·67-s − 13·71-s + 11·73-s − 8·77-s + 4·79-s + 4·83-s + 6·89-s − 2·91-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.755·7-s + 1.20·11-s + 0.277·13-s − 0.917·19-s + 0.208·23-s + 1/5·25-s + 1.29·29-s − 1.25·31-s + 0.338·35-s − 0.657·37-s − 0.468·41-s + 0.914·43-s + 1.89·47-s − 3/7·49-s − 1.37·53-s − 0.539·55-s + 1.04·59-s − 0.124·65-s + 0.977·67-s − 1.54·71-s + 1.28·73-s − 0.911·77-s + 0.450·79-s + 0.439·83-s + 0.635·89-s − 0.209·91-s + ⋯ |
Λ(s)=(=(4140s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4140s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.530741149 |
L(21) |
≈ |
1.530741149 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
| 23 | 1−T |
good | 7 | 1+2T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+4T+pT2 |
| 29 | 1−7T+pT2 |
| 31 | 1+7T+pT2 |
| 37 | 1+4T+pT2 |
| 41 | 1+3T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1−13T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1+13T+pT2 |
| 73 | 1−11T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.582977332348146562710091043065, −7.64570064973687093757758439724, −6.79272605407006166458827493072, −6.42501841167079437554065819928, −5.53392590775861732995702419988, −4.46792999426338875485798833452, −3.82744709866793850051848950489, −3.10614689114143817615345596705, −1.94178657204270397883871050919, −0.70427278926568134058720289386,
0.70427278926568134058720289386, 1.94178657204270397883871050919, 3.10614689114143817615345596705, 3.82744709866793850051848950489, 4.46792999426338875485798833452, 5.53392590775861732995702419988, 6.42501841167079437554065819928, 6.79272605407006166458827493072, 7.64570064973687093757758439724, 8.582977332348146562710091043065